These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21541939)

  • 1. Solubilities and transfer free energies of hydrophobic amino acids in polyol solutions: importance of the hydrophobicity of polyols.
    Abbas SA; Sharma VK; Patapoff TW; Kalonia DS
    J Pharm Sci; 2011 Aug; 100(8):3096-3104. PubMed ID: 21541939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of polyol-induced protein stabilization: solubility of amino acids and diglycine in aqueous polyol solutions.
    Gekko K
    J Biochem; 1981 Dec; 90(6):1633-41. PubMed ID: 7333999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the thermodynamic stability of proteins by polyols: significance of polyol hydrophobicity and impact on the chemical potential of water.
    Kumar V; Chari R; Sharma VK; Kalonia DS
    Int J Pharm; 2011 Jul; 413(1-2):19-28. PubMed ID: 21515346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enthalpy and entropy of transfer of amino acids and diglycine from water to aqueous polyol solutions.
    Gekko K
    J Biochem; 1981 Dec; 90(6):1643-52. PubMed ID: 7334000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of antibody-polyol interactions by static light scattering: implications for physical stability of protein formulations.
    Abbas SA; Sharma VK; Patapoff TW; Kalonia DS
    Int J Pharm; 2013 May; 448(2):382-9. PubMed ID: 23583711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilateral Effects of Excipients on Protein Stability: Preferential Interaction Type of Excipient and Surface Aromatic Hydrophobicity of Protein.
    Wen L; Zheng X; Wang X; Lan H; Yin Z
    Pharm Res; 2017 Jul; 34(7):1378-1390. PubMed ID: 28401430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations.
    Liu FF; Ji L; Zhang L; Dong XY; Sun Y
    J Chem Phys; 2010 Jun; 132(22):225103. PubMed ID: 20550422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of dynamical constraints imposed by water organization around a bio-hydrophobic interface.
    Russo D; Gonzalez MA; Pellegrini E; Combet J; Ollivier J; Teixeira J
    J Phys Chem B; 2013 Mar; 117(10):2829-36. PubMed ID: 23414252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and measurements of solid-liquid and vapor-liquid equilibria of polyols and carbohydrates in aqueous solution.
    Jónsdóttir SO; Cooke SA; Macedo EA
    Carbohydr Res; 2002 Sep; 337(17):1563-71. PubMed ID: 12350326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased thermal stability of proteins in the presence of sugars and polyols.
    Back JF; Oakenfull D; Smith MB
    Biochemistry; 1979 Nov; 18(23):5191-6. PubMed ID: 497177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyol-induced molten globule of cytochrome c: an evidence for stabilization by hydrophobic interaction.
    Kamiyama T; Sadahide Y; Nogusa Y; Gekko K
    Biochim Biophys Acta; 1999 Sep; 1434(1):44-57. PubMed ID: 10556558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposite effects of polyols on antibody aggregation: thermal versus mechanical stresses.
    Abbas SA; Sharma VK; Patapoff TW; Kalonia DS
    Pharm Res; 2012 Mar; 29(3):683-94. PubMed ID: 21948456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of urea and guanidine hydrochloride on peptide and nonpolar groups.
    Nandi PK; Robinson DR
    Biochemistry; 1984 Dec; 23(26):6661-8. PubMed ID: 6529576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volumetric properties of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol and mannitol) in relation to their membrane permeability: group additivity and estimation of the maximum radius of their molecules.
    Kiyosawa K
    Biochim Biophys Acta; 1991 May; 1064(2):251-5. PubMed ID: 2036441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of polyols on polyethylene glycol (PEG)-induced precipitation of proteins: Impact on solubility, stability and conformation.
    Kumar V; Sharma VK; Kalonia DS
    Int J Pharm; 2009 Jan; 366(1-2):38-43. PubMed ID: 18809481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability Conditions and Mechanism of Cream Soaps: Effect of Polyols.
    Sagitani H; Komoriya M
    J Oleo Sci; 2015; 64(8):809-16. PubMed ID: 26179000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration dynamics near a model protein surface.
    Russo D; Hura G; Head-Gordon T
    Biophys J; 2004 Mar; 86(3):1852-62. PubMed ID: 14990511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the solvation of nonpolar amino acids in guanidinium chloride solutions.
    Cohen P; Dill KA; Jaswal SS
    J Phys Chem B; 2014 Sep; 118(36):10618-23. PubMed ID: 25141127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugars and polyols inhibit fibrillogenesis of type I collagen by disrupting hydrogen-bonded water bridges between the helices.
    Kuznetsova N; Chi SL; Leikin S
    Biochemistry; 1998 Aug; 37(34):11888-95. PubMed ID: 9718312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity of aromatic amino acid side chains in amino acid solvents.
    Nomoto A; Nishinami S; Shiraki K
    Biophys Chem; 2022 Aug; 287():106831. PubMed ID: 35667130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.