These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
795 related articles for article (PubMed ID: 2154255)
1. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives. Gu LQ; Yu L; Yu CA Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255 [TBL] [Abstract][Full Text] [Related]
2. Protein ubiquinone interaction. Synthesis and biological properties of 5-alkyl ubiquinone derivatives. He DY; Yu L; Yu CA J Biol Chem; 1994 Nov; 269(45):27885-8. PubMed ID: 7961719 [TBL] [Abstract][Full Text] [Related]
3. Protein-ubiquinone interaction in bovine heart mitochondrial succinate-cytochrome c reductase. Synthesis and biological properties of fluorine substituted ubiquinone derivatives. Yang F; Yu L; He DY; Yu CA J Biol Chem; 1991 Nov; 266(31):20863-9. PubMed ID: 1657937 [TBL] [Abstract][Full Text] [Related]
4. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones. Zhu QS; Beattie DS J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438 [TBL] [Abstract][Full Text] [Related]
5. Effect of alkyl side chain variation on the electron-transfer activity of ubiquinone derivatives. Yu CA; Gu LQ; Lin YZ; Yu L Biochemistry; 1985 Jul; 24(15):3897-902. PubMed ID: 2996584 [TBL] [Abstract][Full Text] [Related]
6. The effect of ring substituents on the mechanism of interaction of exogenous quinones with the mitochondrial respiratory chain. Chen M; Liu BL; Gu LQ; Zhu QS Biochim Biophys Acta; 1986 Oct; 851(3):469-74. PubMed ID: 3019395 [TBL] [Abstract][Full Text] [Related]
7. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors. Yamashita A; Miyoshi H; Hatano T; Iwamura H J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824 [TBL] [Abstract][Full Text] [Related]
8. The quinone-binding site in succinate-ubiquinone reductase from Escherichia coli. Quinone-binding domain and amino acid residues involved in quinone binding. Yang X; Yu L; He D; Yu CA J Biol Chem; 1998 Nov; 273(48):31916-23. PubMed ID: 9822661 [TBL] [Abstract][Full Text] [Related]
9. The effects of nitric oxide on electron transport complexes. Welter R; Yu L; Yu CA Arch Biochem Biophys; 1996 Jul; 331(1):9-14. PubMed ID: 8660677 [TBL] [Abstract][Full Text] [Related]
10. Quantitative resolution of succinate-cytochrome c reductase into succinate-ubiquinone and ubiquinol-cytochrome c reductases. Yu L; Yu CA J Biol Chem; 1982 Feb; 257(4):2016-21. PubMed ID: 6276404 [TBL] [Abstract][Full Text] [Related]
11. Protein-ubiquinone interaction: synthesis and biological properties of ethoxy ubiquinone derivatives. He DY; Gu LQ; Yu L; Yu CA Biochemistry; 1994 Feb; 33(4):880-4. PubMed ID: 8305435 [TBL] [Abstract][Full Text] [Related]
12. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases. Gwak SH; Yu L; Yu CA Biochemistry; 1986 Nov; 25(23):7675-82. PubMed ID: 3026458 [TBL] [Abstract][Full Text] [Related]
13. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria. Beattie DS; Japa S; Howton M; Zhu QS Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974 [TBL] [Abstract][Full Text] [Related]
15. Comparison of structure of quinone redox site in the mitochondrial cytochrome-bc1 complex and photosystem II (QB site). Saitoh I; Miyoshi H; Shimizu R; Iwamura H Eur J Biochem; 1992 Oct; 209(1):73-9. PubMed ID: 1327783 [TBL] [Abstract][Full Text] [Related]
16. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain. Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471 [TBL] [Abstract][Full Text] [Related]
17. Syntheses of biologically active ubiquinone derivatives. Yu CA; Yu L Biochemistry; 1982 Aug; 21(17):4096-101. PubMed ID: 6289870 [TBL] [Abstract][Full Text] [Related]
18. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria. Zhu QS; Beattie DS Biochim Biophys Acta; 1988 Jul; 934(3):303-13. PubMed ID: 2840117 [TBL] [Abstract][Full Text] [Related]
19. Discrete catalytic sites for quinone in the ubiquinol-cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation. Robertson DE; Davidson E; Prince RC; van den Berg WH; Marrs BL; Dutton PL J Biol Chem; 1986 Jan; 261(2):584-91. PubMed ID: 3001072 [TBL] [Abstract][Full Text] [Related]
20. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction. Grivennikova VG; Gavrikova EV; Timoshin AA; Vinogradov AD Biochim Biophys Acta; 1993 Jan; 1140(3):282-92. PubMed ID: 8417779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]