These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21542585)

  • 1. Growth and organization of an organic molecular monolayer on TiO2: catechol on anatase (101).
    Liu LM; Li SC; Cheng H; Diebold U; Selloni A
    J Am Chem Soc; 2011 May; 133(20):7816-23. PubMed ID: 21542585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface.
    Lin JS; Chou WC; Lu SY; Jang GJ; Tseng BR; Li YT
    J Phys Chem B; 2006 Nov; 110(46):23460-6. PubMed ID: 17107198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface.
    Li SC; Chu LN; Gong XQ; Diebold U
    Science; 2010 May; 328(5980):882-4. PubMed ID: 20466928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cis-[PtBr2{PPh2(4-catechol)}2]: synthesis, crystal structure, and computational modelling of its binding to nanocrystalline TiO2.
    Lucas NT; McDonagh AM; Dance IG; Colbran SB; Craig DC
    Dalton Trans; 2006 Feb; (5):680-5. PubMed ID: 16429171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies.
    Gong XQ; Selloni A; Dulub O; Jacobson P; Diebold U
    J Am Chem Soc; 2008 Jan; 130(1):370-81. PubMed ID: 18069837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption-site-dependent electronic structure of catechol on the anatase TiO2(101) surface.
    Li SC; Losovyj Y; Diebold U
    Langmuir; 2011 Jul; 27(14):8600-4. PubMed ID: 21688795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment.
    Anselmi C; Mosconi E; Pastore M; Ronca E; De Angelis F
    Phys Chem Chem Phys; 2012 Dec; 14(46):15963-74. PubMed ID: 23108504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between bonding geometry and band gap states at organic-inorganic interfaces: catechol on rutile TiO2(110).
    Li SC; Wang JG; Jacobson P; Gong XQ; Selloni A; Diebold U
    J Am Chem Soc; 2009 Jan; 131(3):980-4. PubMed ID: 19123790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A DFT study of adsorption of perylene on clean and altered anatase (101) TiO2.
    Ikäläinen S; Laasonen K
    Phys Chem Chem Phys; 2013 Jul; 15(28):11673-8. PubMed ID: 23752781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen interaction with the anatase TiO2(101) surface.
    Aschauer U; Selloni A
    Phys Chem Chem Phys; 2012 Dec; 14(48):16595-602. PubMed ID: 22930163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of oxalate on anatase (100) and rutile (110) surfaces in aqueous systems: experimental results vs. theoretical predictions.
    Mendive CB; Bredow T; Feldhoff A; Blesa MA; Bahnemann D
    Phys Chem Chem Phys; 2009 Mar; 11(11):1794-808. PubMed ID: 19290352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantum-mechanical study of the adsorption of prototype dye molecules on rutile-TiO2(110): a comparison between catechol and isonicotinic acid.
    Risplendi F; Cicero G; Mallia G; Harrison NM
    Phys Chem Chem Phys; 2013 Jan; 15(1):235-43. PubMed ID: 23160267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101).
    Cheng H; Selloni A
    J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of water on reconstructed rutile TiO2(011)-(2 x 1): Ti=O double bonds and surface reactivity.
    Di Valentin C; Tilocca A; Selloni A; Beck TJ; Klust A; Batzill M; Losovyj Y; Diebold U
    J Am Chem Soc; 2005 Jul; 127(27):9895-903. PubMed ID: 15998096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of single- versus double-anchoring modes in di-branched organic sensitizers on TiO2 surfaces: structural and electronic properties.
    Calbo J; Pastore M; Mosconi E; Ortí E; De Angelis F
    Phys Chem Chem Phys; 2014 Mar; 16(10):4709-19. PubMed ID: 24469342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
    Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of ordered C60 islands on TiO2(110).
    Loske F; Bechstein R; Schütte J; Ostendorf F; Reichling M; Kühnle A
    Nanotechnology; 2009 Feb; 20(6):065606. PubMed ID: 19417394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical anatase TiO2 porous nanopillars with high crystallinity and controlled length: an effective candidate for dye-sensitized solar-cells.
    Qu Y; Zhou W; Pan K; Tian C; Ren Z; Dong Y; Fu H
    Phys Chem Chem Phys; 2010 Aug; 12(32):9205-12. PubMed ID: 20623065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing adsorption mode of FePc on TiO2(110) by surface modification with bipyridine.
    Palmgren P; Yu S; Hennies F; Nilson K; Akermark B; Göthelid M
    J Chem Phys; 2008 Aug; 129(7):074707. PubMed ID: 19044792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anharmonic vibrations of the carboxyl group in acetic acid on TiO2: implications for adsorption mode assignment in dye-sensitized solar cells.
    Chan M; Carrington T; Manzhos S
    Phys Chem Chem Phys; 2013 Jul; 15(25):10028-34. PubMed ID: 23486821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.