These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 21542599)

  • 1. Stimulus-responsive hydrogels made from biosynthetic fibrinogen conjugates for tissue engineering: structural characterization.
    Frisman I; Shachaf Y; Seliktar D; Bianco-Peled H
    Langmuir; 2011 Jun; 27(11):6977-86. PubMed ID: 21542599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructuring biosynthetic hydrogels for tissue engineering: a cellular and structural analysis.
    Frisman I; Seliktar D; Bianco-Peled H
    Acta Biomater; 2012 Jan; 8(1):51-60. PubMed ID: 21855662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biocompatibility of PluronicF127 fibrinogen-based hydrogels.
    Shachaf Y; Gonen-Wadmany M; Seliktar D
    Biomaterials; 2010 Apr; 31(10):2836-47. PubMed ID: 20092890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis.
    Frisman I; Seliktar D; Bianco-Peled H
    Biomaterials; 2011 Nov; 32(31):7839-46. PubMed ID: 21784517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering.
    Gonen-Wadmany M; Oss-Ronen L; Seliktar D
    Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructuring of PEG-fibrinogen polymeric scaffolds.
    Frisman I; Seliktar D; Bianco-Peled H
    Acta Biomater; 2010 Jul; 6(7):2518-24. PubMed ID: 19615475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration.
    Dikovsky D; Bianco-Peled H; Seliktar D
    Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-cross-linkable and thermo-responsive hydrogels containing chitosan and Pluronic for sustained release of human growth hormone (hGH).
    Yoo HS
    J Biomater Sci Polym Ed; 2007; 18(11):1429-41. PubMed ID: 17961325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-modified "smart" hydrogels and genetically engineered stem cells for skeletal tissue engineering.
    Garty S; Kimelman-Bleich N; Hayouka Z; Cohn D; Friedler A; Pelled G; Gazit D
    Biomacromolecules; 2010 Jun; 11(6):1516-26. PubMed ID: 20462241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoreversible protein hydrogel as cell scaffold.
    Yan H; Saiani A; Gough JE; Miller AF
    Biomacromolecules; 2006 Oct; 7(10):2776-82. PubMed ID: 17025352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering.
    Dadsetan M; Szatkowski JP; Yaszemski MJ; Lu L
    Biomacromolecules; 2007 May; 8(5):1702-9. PubMed ID: 17419584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery.
    Oss-Ronen L; Seliktar D
    Acta Biomater; 2011 Jan; 7(1):163-70. PubMed ID: 20643230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells.
    Lu PL; Lai JY; Ma DH; Hsiue GH
    J Biomater Sci Polym Ed; 2008; 19(1):1-18. PubMed ID: 18177550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials.
    Gonen-Wadmany M; Goldshmid R; Seliktar D
    Biomaterials; 2011 Sep; 32(26):6025-33. PubMed ID: 21669457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration.
    Park KM; Lee SY; Joung YK; Na JS; Lee MC; Park KD
    Acta Biomater; 2009 Jul; 5(6):1956-65. PubMed ID: 19261553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels.
    Kesselman D; Kossover O; Mironi-Harpaz I; Seliktar D
    Acta Biomater; 2013 Aug; 9(8):7630-9. PubMed ID: 23624218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels.
    Chun KW; Lee JB; Kim SH; Park TG
    Biomaterials; 2005 Jun; 26(16):3319-26. PubMed ID: 15603827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.