These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21542619)

  • 1. On the role of nonbonded interactions in vibrational energy relaxation of cyanide in water.
    Lee MW; Meuwly M
    J Phys Chem A; 2011 May; 115(20):5053-61. PubMed ID: 21542619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O.
    Kandratsenka A; Schroeder J; Schwarzer D; Vikhrenko VS
    J Chem Phys; 2009 May; 130(17):174507. PubMed ID: 19425790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations and instantaneous normal-mode analysis of the vibrational relaxation of the C-H stretching modes of N-methylacetamide-d in liquid deuterated water.
    Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S
    J Phys Chem A; 2010 Nov; 114(43):11450-61. PubMed ID: 20932051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational relaxation of CN stretch of pseudo-halide anions (OCN-, SCN-, and SeCN-) in polar solvents.
    Lenchenkov V; She C; Lian T
    J Phys Chem B; 2006 Oct; 110(40):19990-7. PubMed ID: 17020387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics and dynamics in MbCN: CN--vibrational relaxation from molecular dynamics simulations.
    Danielsson J; Meuwly M
    J Phys Chem B; 2007 Jan; 111(1):218-26. PubMed ID: 17201446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields.
    Lee MW; Meuwly M
    Phys Chem Chem Phys; 2013 Dec; 15(46):20303-12. PubMed ID: 24170171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anharmonic coupling in molecular dynamics simulations of ligand vibrational relaxation in bound carbonmonoxy myoglobin.
    Devereux M; Meuwly M
    J Phys Chem B; 2009 Oct; 113(39):13061-70. PubMed ID: 19725512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational relaxation of normal and deuterated liquid nitromethane.
    Shigeto S; Pang Y; Fang Y; Dlott DD
    J Phys Chem B; 2008 Jan; 112(2):232-41. PubMed ID: 17685649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational relaxation and energy migration of N-methylacetamide in water: the role of nonbonded interactions.
    Cazade PA; Hédin F; Xu ZH; Meuwly M
    J Phys Chem B; 2015 Feb; 119(7):3112-22. PubMed ID: 25581333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redistribution of carbonyl stretch mode energy in isolated and solvated N-methylacetamide: kinetic energy spectral density analyses.
    Jeon J; Cho M
    J Chem Phys; 2011 Dec; 135(21):214504. PubMed ID: 22149799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient absorption studies of vibrational relaxation and photophysics of Prussian blue and ruthenium purple nanoparticles.
    Weidinger D; Brown DJ; Owrutsky JC
    J Chem Phys; 2011 Mar; 134(12):124510. PubMed ID: 21456679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations.
    Lee MW; Carr JK; Göllner M; Hamm P; Meuwly M
    J Chem Phys; 2013 Aug; 139(5):054506. PubMed ID: 23927269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved infrared absorption studies of the solvent-dependent vibrational relaxation dynamics of chlorine dioxide.
    Bolinger JC; Bixby TJ; Reid PJ
    J Chem Phys; 2005 Aug; 123(8):084503. PubMed ID: 16164308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-bond disruption by vibrational excitations in water.
    Wang Z; Pang Y; Dlott DD
    J Phys Chem A; 2007 May; 111(17):3196-208. PubMed ID: 17388394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full quantum vibrational simulation of the relaxation of the cyanide ion in water using the Ehrenfest method with quantum corrections.
    Bastida A; Zúñiga J; Requena A; Miguel B
    J Chem Phys; 2008 Oct; 129(15):154501. PubMed ID: 19045203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instantaneous normal modes, resonances, and decay channels in the vibrational relaxation of the amide I mode of N-methylacetamide-D in liquid deuterated water.
    Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S
    J Chem Phys; 2010 Jun; 132(22):224501. PubMed ID: 20550402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientational dynamics of isotopically diluted H2O and D2O.
    Rezus YL; Bakker HJ
    J Chem Phys; 2006 Oct; 125(14):144512. PubMed ID: 17042614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-dependent photoacidity state of pyranine monitored by transient mid-infrared spectroscopy.
    Mohammed OF; Dreyer J; Magnes BZ; Pines E; Nibbering ET
    Chemphyschem; 2005 Apr; 6(4):625-36. PubMed ID: 15881578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared and molecular-dynamics studies of the rotational dynamics of water highly diluted in supercritical CO2.
    Danten Y; Tassaing T; Besnard M
    J Chem Phys; 2005 Aug; 123(7):074505. PubMed ID: 16229599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.