These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21542637)

  • 1. Quantitatively interpreted enhanced inhibition of cytochrome P450s by heteroaromatic rings containing nitrogen.
    Leach AG; Kidley NJ
    J Chem Inf Model; 2011 May; 51(5):1048-63. PubMed ID: 21542637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: search for an Fe(I) oxidation state.
    Porro CS; Kumar D; de Visser SP
    Phys Chem Chem Phys; 2009 Nov; 11(43):10219-26. PubMed ID: 19865780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins.
    Kirton SB; Murray CW; Verdonk ML; Taylor RD
    Proteins; 2005 Mar; 58(4):836-44. PubMed ID: 15651036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic ground states of iron porphyrin and of the first species in the catalytic reaction cycle of cytochrome P450s.
    Groenhof AR; Swart M; Ehlers AW; Lammertsma K
    J Phys Chem A; 2005 Apr; 109(15):3411-7. PubMed ID: 16833677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models.
    Oda A; Yamaotsu N; Hirono S
    J Comput Chem; 2005 Jun; 26(8):818-26. PubMed ID: 15812779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfoxidation mechanisms catalyzed by cytochrome P450 and horseradish peroxidase models: spin selection induced by the ligand.
    Kumar D; de Visser SP; Sharma PK; Hirao H; Shaik S
    Biochemistry; 2005 Jun; 44(22):8148-58. PubMed ID: 15924434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the ligand-CYP2B4 complexes: effect of structure on binding free energies and heme spin state.
    Harris DL; Park JY; Gruenke L; Waskell L
    Proteins; 2004 Jun; 55(4):895-914. PubMed ID: 15146488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbene generation by cytochromes and electronic structure of heme-iron-porphyrin-carbene complex: a quantum chemical study.
    Taxak N; Patel B; Bharatam PV
    Inorg Chem; 2013 May; 52(9):5097-109. PubMed ID: 23560646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?
    de Visser SP; Tahsini L; Nam W
    Chemistry; 2009; 15(22):5577-87. PubMed ID: 19347895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique heme environment at the putative distal region of hydrogen peroxide-dependent fatty acid alpha-hydroxylase from Sphingomonas paucimobilis (peroxygenase P450(SPalpha).
    Imai Y; Matsunaga I; Kusunose E; Ichihara K
    J Biochem; 2000 Aug; 128(2):189-94. PubMed ID: 10920253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ENDOR investigation of the liganding environment of mixed-spin ferric cytochrome c'.
    Usov OM; Choi PS; Shapleigh JP; Scholes CP
    J Am Chem Soc; 2005 Jul; 127(26):9485-94. PubMed ID: 15984875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of axial ligand, spin state, and hydrogen bonding on the inner-sphere reorganization energies of functional models of cytochrome P450.
    Bandyopadhyay S; Rana A; Mittra K; Samanta S; Sengupta K; Dey A
    Inorg Chem; 2014 Oct; 53(19):10150-8. PubMed ID: 25238648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes?
    de Visser SP
    J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How is a metabolic intermediate formed in the mechanism-based inactivation of cytochrome P450 by using 1,1-dimethylhydrazine: hydrogen abstraction or nitrogen oxidation?
    Hirao H; Chuanprasit P; Cheong YY; Wang X
    Chemistry; 2013 Jun; 19(23):7361-9. PubMed ID: 23592585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of activation energies for aromatic oxidation by cytochrome P450.
    Rydberg P; Ryde U; Olsen L
    J Phys Chem A; 2008 Dec; 112(50):13058-65. PubMed ID: 18986131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(IV)-oxo complexes mimicking cytochrome P450 enzymes.
    Kumar D; Sastry GN; de Visser SP
    J Phys Chem B; 2012 Jan; 116(1):718-30. PubMed ID: 22132821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The axial ligand effect on aliphatic and aromatic hydroxylation by non-heme iron(IV)-oxo biomimetic complexes.
    de Visser SP; Latifi R; Tahsini L; Nam W
    Chem Asian J; 2011 Feb; 6(2):493-504. PubMed ID: 21254427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The accuracy of geometries for iron porphyrin complexes from density functional theory.
    Rydberg P; Olsen L
    J Phys Chem A; 2009 Oct; 113(43):11949-53. PubMed ID: 19663404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insight into the electronic structure of iron(IV)-oxo porphyrin compound I. A quantum chemical topological analysis.
    Viciano I; Berski S; Martí S; Andrés J
    J Comput Chem; 2013 Apr; 34(9):780-9. PubMed ID: 23233452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs.
    Shaik S; Lai W; Chen H; Wang Y
    Acc Chem Res; 2010 Aug; 43(8):1154-65. PubMed ID: 20527755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.