These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 21542648)
41. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. Lu W; Wan J; She Z; Jiang X J Control Release; 2007 Mar; 118(1):38-53. PubMed ID: 17240471 [TBL] [Abstract][Full Text] [Related]
42. Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. Liu Z; Jiao Y; Liu F; Zhang Z J Biomed Mater Res A; 2007 Dec; 83(3):806-12. PubMed ID: 17559117 [TBL] [Abstract][Full Text] [Related]
43. Synthesis, characterization and antioxidant activity copper-quercetin complex. Bukhari SB; Memon S; Mahroof-Tahir M; Bhanger MI Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1901-6. PubMed ID: 18783981 [TBL] [Abstract][Full Text] [Related]
44. Galactosylated bovine serum albumin nanoparticles for parenteral delivery of oridonin: tissue distribution and pharmacokinetic studies. Li C; Zhang D; Guo Y; Guo H; Li T; Hao L; Zheng D; Liu G; Zhang Q J Microencapsul; 2014; 31(6):573-8. PubMed ID: 24697186 [TBL] [Abstract][Full Text] [Related]
45. Delivery of proteins to the brain by bolaamphiphilic nano-sized vesicles. Dakwar GR; Abu Hammad I; Popov M; Linder C; Grinberg S; Heldman E; Stepensky D J Control Release; 2012 Jun; 160(2):315-21. PubMed ID: 22261280 [TBL] [Abstract][Full Text] [Related]
46. Preparation and characterization of folate conjugated N-trimethyl chitosan nanoparticles as protein carrier targeting folate receptor: in vitro studies. Zheng Y; Cai Z; Song X; Chen Q; Bi Y; Li Y; Hou S J Drug Target; 2009 May; 17(4):294-303. PubMed ID: 19255895 [TBL] [Abstract][Full Text] [Related]
47. The interaction between Ag+ and bovine serum albumin: a spectroscopic investigation. Zhao X; Liu R; Teng Y; Liu X Sci Total Environ; 2011 Feb; 409(5):892-7. PubMed ID: 21167558 [TBL] [Abstract][Full Text] [Related]
48. Binding interaction of quinclorac with bovine serum albumin: a biophysical study. Han XL; Mei P; Liu Y; Xiao Q; Jiang FL; Li R Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(3):781-7. PubMed ID: 19729340 [TBL] [Abstract][Full Text] [Related]
49. Effect of the glycosylation of flavonoids on interaction with protein. Cao H; Wu D; Wang H; Xu M Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):972-5. PubMed ID: 19493695 [TBL] [Abstract][Full Text] [Related]
50. Tuning the binding, release and cytotoxicity of hydrophobic drug by Bovine Serum Albumin nanoparticles: Influence of particle size. Das RP; Singh BG; Kunwar A; Ramani MV; Subbaraju GV; Hassan PA; Priyadarsini KI Colloids Surf B Biointerfaces; 2017 Oct; 158():682-688. PubMed ID: 28783613 [TBL] [Abstract][Full Text] [Related]
51. Toxic effects of ethanol on bovine serum albumin. Liu R; Qin P; Wang L; Zhao X; Liu Y; Hao X J Biochem Mol Toxicol; 2010; 24(1):66-71. PubMed ID: 20175145 [TBL] [Abstract][Full Text] [Related]
52. Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques. Yang Q; Liang J; Han H J Phys Chem B; 2009 Jul; 113(30):10454-8. PubMed ID: 19583232 [TBL] [Abstract][Full Text] [Related]
53. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. Dueñas M; González-Manzano S; González-Paramás A; Santos-Buelga C J Pharm Biomed Anal; 2010 Jan; 51(2):443-9. PubMed ID: 19442472 [TBL] [Abstract][Full Text] [Related]
54. Conformational alteration in serum albumin as a carrier for pyridoxal phosphate: a distinction from pyridoxal phosphate-dependent glutamate decarboxylase. Zhang F; Thottananiyil M; Martin DL; Chen CH Arch Biochem Biophys; 1999 Apr; 364(2):195-202. PubMed ID: 10190974 [TBL] [Abstract][Full Text] [Related]
55. Effects of gene carrier polyethyleneimines on the structure and binding capability of bovine serum albumin. Guo Z; Kong Z; Wei Y; Li H; Wang Y; Huang A; Ma L Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():783-791. PubMed ID: 27810769 [TBL] [Abstract][Full Text] [Related]
56. Toxic effects of different charged metal ions on the target--bovine serum albumin. Zhang H; Liu R; Chi Z; Gao C Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):523-7. PubMed ID: 21146454 [TBL] [Abstract][Full Text] [Related]
57. Spectroscopic studies on the interaction of lanthanum(III) 2-oxo-propionic acid salicyloyl hydrazone complex with bovine serum albumin. Zhang YZ; Chen XX; Dai J; Zhang XP; Liu YX; Liu Y Luminescence; 2008; 23(3):150-6. PubMed ID: 18452134 [TBL] [Abstract][Full Text] [Related]
58. Stabilization of TiO2 nanoparticles in complex medium through a pH adjustment protocol. Guiot C; Spalla O Environ Sci Technol; 2013 Jan; 47(2):1057-64. PubMed ID: 23240597 [TBL] [Abstract][Full Text] [Related]
59. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study. Shang L; Wang Y; Jiang J; Dong S Langmuir; 2007 Feb; 23(5):2714-21. PubMed ID: 17249699 [TBL] [Abstract][Full Text] [Related]
60. Specific interactions of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence. Gutzeit HO; Henker Y; Kind B; Franz A Biochem Biophys Res Commun; 2004 May; 318(2):490-5. PubMed ID: 15120627 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]