These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 21542682)
1. Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood-brain barrier. Tosi G; Fano RA; Bondioli L; Badiali L; Benassi R; Rivasi F; Ruozi B; Forni F; Vandelli MA Nanomedicine (Lond); 2011 Apr; 6(3):423-36. PubMed ID: 21542682 [TBL] [Abstract][Full Text] [Related]
2. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. Tosi G; Costantino L; Rivasi F; Ruozi B; Leo E; Vergoni AV; Tacchi R; Bertolini A; Vandelli MA; Forni F J Control Release; 2007 Sep; 122(1):1-9. PubMed ID: 17651855 [TBL] [Abstract][Full Text] [Related]
3. Sialic acid and glycopeptides conjugated PLGA nanoparticles for central nervous system targeting: In vivo pharmacological evidence and biodistribution. Tosi G; Vergoni AV; Ruozi B; Bondioli L; Badiali L; Rivasi F; Costantino L; Forni F; Vandelli MA J Control Release; 2010 Jul; 145(1):49-57. PubMed ID: 20338201 [TBL] [Abstract][Full Text] [Related]
4. Insight on the fate of CNS-targeted nanoparticles. Part II: Intercellular neuronal cell-to-cell transport. Tosi G; Vilella A; Chhabra R; Schmeisser MJ; Boeckers TM; Ruozi B; Vandelli MA; Forni F; Zoli M; Grabrucker AM J Control Release; 2014 Mar; 177():96-107. PubMed ID: 24417968 [TBL] [Abstract][Full Text] [Related]
5. Exploiting Bacterial Pathways for BBB Crossing with PLGA Nanoparticles Modified with a Mutated Form of Diphtheria Toxin (CRM197): In Vivo Experiments. Tosi G; Vilella A; Veratti P; Belletti D; Pederzoli F; Ruozi B; Vandelli MA; Zoli M; Forni F Mol Pharm; 2015 Oct; 12(10):3672-84. PubMed ID: 26312414 [TBL] [Abstract][Full Text] [Related]
6. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood-brain barrier. Chen YC; Hsieh WY; Lee WF; Zeng DT J Biomater Appl; 2013 Mar; 27(7):909-22. PubMed ID: 22207601 [TBL] [Abstract][Full Text] [Related]
7. Insight on the fate of CNS-targeted nanoparticles. Part I: Rab5-dependent cell-specific uptake and distribution. Vilella A; Tosi G; Grabrucker AM; Ruozi B; Belletti D; Vandelli MA; Boeckers TM; Forni F; Zoli M J Control Release; 2014 Jan; 174():195-201. PubMed ID: 24316476 [TBL] [Abstract][Full Text] [Related]
8. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier. Tosi G; Bortot B; Ruozi B; Dolcetta D; Vandelli MA; Forni F; Severini GM Curr Med Chem; 2013; 20(17):2212-25. PubMed ID: 23458620 [TBL] [Abstract][Full Text] [Related]
9. Comparative evaluation of the degree of pegylation of poly(lactic-co-glycolic acid) nanoparticles in enhancing central nervous system delivery of loperamide. Kirby BP; Pabari R; Chen CN; Al Baharna M; Walsh J; Ramtoola Z J Pharm Pharmacol; 2013 Oct; 65(10):1473-81. PubMed ID: 24028614 [TBL] [Abstract][Full Text] [Related]
10. Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles. Kuo YC; Chen YC Int J Pharm; 2015 Feb; 479(1):138-49. PubMed ID: 25560309 [TBL] [Abstract][Full Text] [Related]
12. Hybrid nanoparticles as a new technological approach to enhance the delivery of cholesterol into the brain. Belletti D; Grabrucker AM; Pederzoli F; Menrath I; Vandelli MA; Tosi G; Duskey TJ; Forni F; Ruozi B Int J Pharm; 2018 May; 543(1-2):300-310. PubMed ID: 29608954 [TBL] [Abstract][Full Text] [Related]
13. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier. Fornaguera C; Dols-Perez A; Calderó G; García-Celma MJ; Camarasa J; Solans C J Control Release; 2015 Aug; 211():134-43. PubMed ID: 26057857 [TBL] [Abstract][Full Text] [Related]
14. Brain-targeted polymeric nanoparticles: in vivo evidence of different routes of administration in rodents. Tosi G; Ruozi B; Belletti D; Vilella A; Zoli M; Vandelli MA; Forni F Nanomedicine (Lond); 2013 Sep; 8(9):1373-83. PubMed ID: 23565661 [TBL] [Abstract][Full Text] [Related]
15. Can leptin-derived sequence-modified nanoparticles be suitable tools for brain delivery? Tosi G; Badiali L; Ruozi B; Vergoni AV; Bondioli L; Ferrari A; Rivasi F; Forni F; Vandelli MA Nanomedicine (Lond); 2012 Mar; 7(3):365-82. PubMed ID: 21957863 [TBL] [Abstract][Full Text] [Related]
16. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Feng SS; Mei L; Anitha P; Gan CW; Zhou W Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012 [TBL] [Abstract][Full Text] [Related]
17. Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Gan CW; Feng SS Biomaterials; 2010 Oct; 31(30):7748-57. PubMed ID: 20673685 [TBL] [Abstract][Full Text] [Related]
18. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood-brain barrier. Chaturvedi M; Molino Y; Sreedhar B; Khrestchatisky M; Kaczmarek L Int J Nanomedicine; 2014; 9():575-88. PubMed ID: 24531257 [TBL] [Abstract][Full Text] [Related]
19. Nanoparticulate drug carriers based on hybrid poly(D,L-lactide-co-glycolide)-dendron structures. Costantino L; Gandolfi F; Bossy-Nobs L; Tosi G; Gurny R; Rivasi F; Vandelli MA; Forni F Biomaterials; 2006 Sep; 27(26):4635-45. PubMed ID: 16716395 [TBL] [Abstract][Full Text] [Related]
20. Targeted Polymeric Nanoparticles for Brain Delivery of High Molecular Weight Molecules in Lysosomal Storage Disorders. Salvalaio M; Rigon L; Belletti D; D'Avanzo F; Pederzoli F; Ruozi B; Marin O; Vandelli MA; Forni F; Scarpa M; Tomanin R; Tosi G PLoS One; 2016; 11(5):e0156452. PubMed ID: 27228099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]