These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 21543073)
1. Simple models for the effect of aliphatic alcohol additives on the retention in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A; Agrafiotou P; Fasoula S J Chromatogr A; 2011 Jun; 1218(23):3616-23. PubMed ID: 21543073 [TBL] [Abstract][Full Text] [Related]
2. Separation optimization in reversed-phase liquid chromatography by using alkanol additives in the mobile phase: application to amino acids. Pappa-Louisi A; Agrafiotou P; Georgiadis I Talanta; 2011 Sep; 85(4):2241-5. PubMed ID: 21872084 [TBL] [Abstract][Full Text] [Related]
3. Retention prediction in reversed-phase liquid chromatography systems with methanol/water mobile phases containing different alkanols as additives. Pappa-Louisi A; Agrafiotou P; Fasoula S J Sep Sci; 2011 Feb; 34(3):255-9. PubMed ID: 21268247 [TBL] [Abstract][Full Text] [Related]
4. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140 [TBL] [Abstract][Full Text] [Related]
5. Performance of short-chain alcohols versus acetonitrile in the surfactant-mediated reversed-phase liquid chromatographic separation of β-blockers. Ruiz-Ángel MJ; Torres-Lapasió JR; Carda-Broch S; García-Álvarez-Coque MC J Chromatogr A; 2010 Nov; 1217(45):7090-9. PubMed ID: 20934180 [TBL] [Abstract][Full Text] [Related]
6. Effect of short-chain alcohols on surfactant-mediated reversed-phase liquid chromatographic systems. Ruiz-Ángel MJ; Carda-Broch S; García-Álvarez-Coque MC J Chromatogr A; 2010 Nov; 1217(45):7082-9. PubMed ID: 20932525 [TBL] [Abstract][Full Text] [Related]
7. A simple approach for retention prediction in the pH-gradient reversed-phase liquid chromatography. Pappa-Louisi A; Zisi Ch Talanta; 2012 May; 93():279-84. PubMed ID: 22483911 [TBL] [Abstract][Full Text] [Related]
8. Combined effects of mobile phase composition and temperature on the retention of homologous and polar test compounds on polydentate C8 column. Jandera P; Krupczyńska K; Vynuchalová K; Buszewski B J Chromatogr A; 2010 Sep; 1217(39):6052-60. PubMed ID: 20728897 [TBL] [Abstract][Full Text] [Related]
9. Application of perfluorinated acids as ion-pairing reagents for reversed-phase chromatography and retention-hydrophobicity relationships studies of selected beta-blockers. Flieger J J Chromatogr A; 2010 Jan; 1217(4):540-9. PubMed ID: 19969302 [TBL] [Abstract][Full Text] [Related]
10. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature. Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773 [TBL] [Abstract][Full Text] [Related]
11. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. Rafferty JL; Siepmann JI; Schure MR J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic vs. extrathermodynamic modeling of chromatographic retention. Kaliszan R; Wiczling P; Markuszewski MJ; Al-Haj MA J Chromatogr A; 2011 Aug; 1218(31):5120-30. PubMed ID: 21665211 [TBL] [Abstract][Full Text] [Related]
13. Probing the nucleation mechanism for the binary n-nonane/1-alcohol series with atomistic simulations. Nellas RB; McKenzie ME; Chen B J Phys Chem B; 2006 Sep; 110(37):18619-28. PubMed ID: 16970491 [TBL] [Abstract][Full Text] [Related]
14. Modeling the effects of type and concentration of organic modifiers, column type and chemical structure of analytes on the retention in reversed phase liquid chromatography using a single model. Jouyban A; Soltani S; Shayanfar A; Pappa-Louisi A J Chromatogr A; 2011 Sep; 1218(37):6454-63. PubMed ID: 21820120 [TBL] [Abstract][Full Text] [Related]
15. Optimisation of multilinear gradient elutions in reversed-phase liquid chromatography using ternary solvent mixtures. Pappa-Louisi A; Nikitas P; Papageorgiou A J Chromatogr A; 2007 Sep; 1166(1-2):126-34. PubMed ID: 17720170 [TBL] [Abstract][Full Text] [Related]
16. Retention prediction and separation optimization of ionizable analytes in reversed-phase liquid chromatography by organic modifier gradients in different eluent pHs. Fasoula S; Zisi Ch; Nikitas P; Pappa-Louisi A J Chromatogr A; 2013 Aug; 1305():131-8. PubMed ID: 23885673 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of ternary mobile phases for reversed-phase liquid chromatography: effect of composition on retention mechanism. Coym JW J Chromatogr A; 2010 Sep; 1217(38):5957-64. PubMed ID: 20723902 [TBL] [Abstract][Full Text] [Related]
18. Multilinear gradient elution optimization in reversed-phase liquid chromatography based on logarithmic retention models: application to separation of a set of purines, pyrimidines and nucleosides. Nikitas P; Pappa-Louisi A; Agrafiotou P; Mansour A J Chromatogr A; 2011 Aug; 1218(33):5658-63. PubMed ID: 21774937 [TBL] [Abstract][Full Text] [Related]
19. Competitional hydrophobicity driven separations under RP-LC mechanism: application to sulfonylurea congeners. David V; Galaon T; Caiali E; Medvedovici A J Sep Sci; 2009 Sep; 32(18):3099-106. PubMed ID: 19697317 [TBL] [Abstract][Full Text] [Related]
20. Application of (S)-N-(4-Nitrophenoxycarbonyl) phenylalanine methoxyethyl ester as a chiral derivatizing reagent for reversed-phase high-performance liquid chromatographic separation of diastereomers of amino alcohols, non-protein amino acids, and PenA. Bhushan R; Agarwal C Amino Acids; 2010 Jul; 39(2):549-54. PubMed ID: 20108159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]