These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21543083)

  • 21. Direct Synthesis of CuPd Icosahedra Supercrystals Studied by In Situ X-Ray Scattering.
    Derelli D; Frank K; Grote L; Mancini F; Dippel AC; Gutowski O; Nickel B; Koziej D
    Small; 2024 Mar; ():e2311714. PubMed ID: 38501853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes.
    Yao KX; Yin XM; Wang TH; Zeng HC
    J Am Chem Soc; 2010 May; 132(17):6131-44. PubMed ID: 20392039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collective Plasmonic Properties in Few-Layer Gold Nanorod Supercrystals.
    Hamon C; Novikov SM; Scarabelli L; Solís DM; Altantzis T; Bals S; Taboada JM; Obelleiro F; Liz-Marzán LM
    ACS Photonics; 2015 Oct; 2(10):1482-1488. PubMed ID: 27294173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled growth and shape-directed self-assembly of gold nanoarrows.
    Wang Q; Wang Z; Li Z; Xiao J; Shan H; Fang Z; Qi L
    Sci Adv; 2017 Oct; 3(10):e1701183. PubMed ID: 29098180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure.
    Xiao J; Li Z; Ye X; Ma Y; Qi L
    Nanoscale; 2014 Jan; 6(2):996-1004. PubMed ID: 24292548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices.
    Henzie J; Grünwald M; Widmer-Cooper A; Geissler PL; Yang P
    Nat Mater; 2011 Nov; 11(2):131-7. PubMed ID: 22101811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent-like interactions between artificial atoms inside silver supercrystals.
    Wang X; Zhuang J; Huo Z; Hu S; Li Y
    Inorg Chem; 2008 Jan; 47(2):543-7. PubMed ID: 18088117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and assembly of monodisperse spherical Cu2S nanocrystals.
    Li S; Wang H; Xu W; Si H; Tao X; Lou S; Du Z; Li LS
    J Colloid Interface Sci; 2009 Feb; 330(2):483-7. PubMed ID: 19007936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Stable Perovskite Supercrystals via Oil-in-Oil Templating.
    Tang Y; Gomez L; Lesage A; Marino E; Kodger TE; Meijer JM; Kolpakov P; Meng J; Zheng K; Gregorkiewicz T; Schall P
    Nano Lett; 2020 Aug; 20(8):5997-6004. PubMed ID: 32701303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconfigurable assemblies of shape-changing nanorods.
    Nguyen TD; Glotzer SC
    ACS Nano; 2010 May; 4(5):2585-94. PubMed ID: 20408583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superstructures generated from truncated tetrahedral quantum dots.
    Nagaoka Y; Tan R; Li R; Zhu H; Eggert D; Wu YA; Liu Y; Wang Z; Chen O
    Nature; 2018 Sep; 561(7723):378-382. PubMed ID: 30232427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembly of colloidal one-dimensional nanocrystals.
    Zhang SY; Regulacio MD; Han MY
    Chem Soc Rev; 2014 Apr; 43(7):2301-23. PubMed ID: 24413386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring Nanocrystal Self-Assembly in Real Time Using In Situ Small-Angle X-Ray Scattering.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    Small; 2019 May; 15(20):e1900438. PubMed ID: 30993864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prismatic Confinement Induces Tunable Orientation in Plasmonic Supercrystals.
    Chaâbani W; Lyu J; Marcone J; Goldmann C; Ten Veen EJM; Dumesnil C; Bizien T; Smallenburg F; Impéror-Clerc M; Constantin D; Hamon C
    ACS Nano; 2024 Apr; 18(13):9566-9575. PubMed ID: 38507585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of surface ligands in the nanoparticle assemblies: a case study of regularly shaped colloidal crystals composed of sodium rare earth fluoride.
    Feng W; Sun LD; Yan CH
    Langmuir; 2011 Apr; 27(7):3343-7. PubMed ID: 21355571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A synthetic method for transition-metal chalcogenide nanocrystals.
    Wang DS; Zheng W; Hao CH; Peng Q; Li YD
    Chemistry; 2009; 15(8):1870-5. PubMed ID: 19123218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable plasmonic lattices of silver nanocrystals.
    Tao A; Sinsermsuksakul P; Yang P
    Nat Nanotechnol; 2007 Jul; 2(7):435-40. PubMed ID: 18654329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties.
    Lin MH; Chen HY; Gwo S
    J Am Chem Soc; 2010 Aug; 132(32):11259-63. PubMed ID: 20698692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZnO twin-spheres exposed in ±(001) facets: stepwise self-assembly growth and anisotropic blue emission.
    Li F; Gong F; Xiao Y; Zhang A; Zhao J; Fang S; Jia D
    ACS Nano; 2013 Dec; 7(12):10482-91. PubMed ID: 24251905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals.
    Tang A; Qu S; Li K; Hou Y; Teng F; Cao J; Wang Y; Wang Z
    Nanotechnology; 2010 Jul; 21(28):285602. PubMed ID: 20562487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.