These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 21543224)
1. Evaluating industrial symbiosis and algae cultivation from a life cycle perspective. Soratana K; Landis AE Bioresour Technol; 2011 Jul; 102(13):6892-901. PubMed ID: 21543224 [TBL] [Abstract][Full Text] [Related]
2. Cultivation of Chlorella vulgaris in Column Photobioreactor for Biomass Production and Lipid Accumulation. Wong YK; Ho KC; Tsang YF; Wang L; Yung KK Water Environ Res; 2016 Jan; 88(1):40-6. PubMed ID: 26803025 [TBL] [Abstract][Full Text] [Related]
3. Quantifying the total environmental impacts of an industrial symbiosis - a comparison of process-, hybrid and input-output life cycle assessment. Mattila TJ; Pakarinen S; Sokka L Environ Sci Technol; 2010 Jun; 44(11):4309-14. PubMed ID: 20408541 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
5. Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode. Gao F; Yang ZH; Li C; Wang YJ; Jin WH; Deng YB Bioresour Technol; 2014 Sep; 167():441-6. PubMed ID: 25006019 [TBL] [Abstract][Full Text] [Related]
7. Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature. Cleary J Environ Int; 2009 Nov; 35(8):1256-66. PubMed ID: 19682746 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor. Sun Y; Huang Y; Liao Q; Fu Q; Zhu X Bioresour Technol; 2016 May; 207():31-8. PubMed ID: 26868153 [TBL] [Abstract][Full Text] [Related]
9. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Min M; Wang L; Li Y; Mohr MJ; Hu B; Zhou W; Chen P; Ruan R Appl Biochem Biotechnol; 2011 Sep; 165(1):123-37. PubMed ID: 21494756 [TBL] [Abstract][Full Text] [Related]
10. Cultivation of microalgae (Oscillatoria okeni and Chlorella vulgaris) using tilapia-pond effluent and a comparison of their biomass removal efficiency. Attasat S; Wanichpongpan P; Ruenglertpanyakul W Water Sci Technol; 2013; 67(2):271-7. PubMed ID: 23168623 [TBL] [Abstract][Full Text] [Related]
11. Biodiesel production from hydrolysate of Cyperus esculentus waste by Chlorella vulgaris. Wang W; Zhou W; Liu J; Li Y; Zhang Y Bioresour Technol; 2013 May; 136():24-9. PubMed ID: 23548401 [TBL] [Abstract][Full Text] [Related]
12. Effects of co-products on the life-cycle impacts of microalgal biodiesel. Soratana K; Barr WJ; Landis AE Bioresour Technol; 2014 May; 159():157-66. PubMed ID: 24650529 [TBL] [Abstract][Full Text] [Related]
13. Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and applications. Rebitzer G; Ekvall T; Frischknecht R; Hunkeler D; Norris G; Rydberg T; Schmidt WP; Suh S; Weidema BP; Pennington DW Environ Int; 2004 Jul; 30(5):701-20. PubMed ID: 15051246 [TBL] [Abstract][Full Text] [Related]
14. The environmental sustainability of microalgae as feed for aquaculture: a life cycle perspective. Taelman SE; De Meester S; Roef L; Michiels M; Dewulf J Bioresour Technol; 2013 Dec; 150():513-22. PubMed ID: 24012094 [TBL] [Abstract][Full Text] [Related]
15. High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production. Chang H; Quan X; Zhong N; Zhang Z; Lu C; Li G; Cheng Z; Yang L Bioresour Technol; 2018 Oct; 266():374-381. PubMed ID: 29982060 [TBL] [Abstract][Full Text] [Related]
16. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Brentner LB; Eckelman MJ; Zimmerman JB Environ Sci Technol; 2011 Aug; 45(16):7060-7. PubMed ID: 21662987 [TBL] [Abstract][Full Text] [Related]
17. High density long-term cultivation of Chlorella vulgaris SAG 211-12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in SPACE. Helisch H; Keppler J; Detrell G; Belz S; Ewald R; Fasoulas S; Heyer AG Life Sci Space Res (Amst); 2020 Feb; 24():91-107. PubMed ID: 31987484 [TBL] [Abstract][Full Text] [Related]
18. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Discart V; Bilad MR; Marbelia L; Vankelecom IF Bioresour Technol; 2014; 152():321-8. PubMed ID: 24315936 [TBL] [Abstract][Full Text] [Related]
19. A novel optical panel photobioreactor for cultivation of microalgae. Choi HJ; Lee JM; Lee SM Water Sci Technol; 2013; 67(11):2543-8. PubMed ID: 23752387 [TBL] [Abstract][Full Text] [Related]
20. Continuous microalgae cultivation in a photobioreactor. Tang H; Chen M; Ng KY; Salley SO Biotechnol Bioeng; 2012 Oct; 109(10):2468-74. PubMed ID: 22488253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]