These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
885 related articles for article (PubMed ID: 21543442)
41. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data. He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545 [TBL] [Abstract][Full Text] [Related]
42. An algorithmic perspective of de novo cis-regulatory motif finding based on ChIP-seq data. Liu B; Yang J; Li Y; McDermaid A; Ma Q Brief Bioinform; 2018 Sep; 19(5):1069-1081. PubMed ID: 28334268 [TBL] [Abstract][Full Text] [Related]
43. Identification of Predictive Cis-Regulatory Elements Using a Discriminative Objective Function and a Dynamic Search Space. Karnik R; Beer MA PLoS One; 2015; 10(10):e0140557. PubMed ID: 26465884 [TBL] [Abstract][Full Text] [Related]
44. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets. Ha N; Polychronidou M; Lohmann I PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209 [TBL] [Abstract][Full Text] [Related]
45. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections. Castro-Mondragon JA; Jaeger S; Thieffry D; Thomas-Chollier M; van Helden J Nucleic Acids Res; 2017 Jul; 45(13):e119. PubMed ID: 28591841 [TBL] [Abstract][Full Text] [Related]
46. Cell-type and transcription factor specific enrichment of transcriptional cofactor motifs in ENCODE ChIP-seq data. Goi C; Little P; Xie C BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S2. PubMed ID: 24564528 [TBL] [Abstract][Full Text] [Related]
47. PscanChIP: Finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments. Zambelli F; Pesole G; Pavesi G Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W535-43. PubMed ID: 23748563 [TBL] [Abstract][Full Text] [Related]
48. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets. Vishnevsky OV; Bocharnikov AV; Kolchanov NA J Bioinform Comput Biol; 2018 Feb; 16(1):1740012. PubMed ID: 29281953 [TBL] [Abstract][Full Text] [Related]
49. PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data. Zhang Y; Lin YH; Johnson TD; Rozek LS; Sartor MA Bioinformatics; 2014 Sep; 30(18):2568-75. PubMed ID: 24894502 [TBL] [Abstract][Full Text] [Related]
50. Distinguishing direct versus indirect transcription factor-DNA interactions. Gordân R; Hartemink AJ; Bulyk ML Genome Res; 2009 Nov; 19(11):2090-100. PubMed ID: 19652015 [TBL] [Abstract][Full Text] [Related]
51. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm. Zhang Z; Chang CW; Hugo W; Cheung E; Sung WK J Comput Biol; 2013 Mar; 20(3):237-48. PubMed ID: 23461573 [TBL] [Abstract][Full Text] [Related]
52. Discovering motifs in ranked lists of DNA sequences. Eden E; Lipson D; Yogev S; Yakhini Z PLoS Comput Biol; 2007 Mar; 3(3):e39. PubMed ID: 17381235 [TBL] [Abstract][Full Text] [Related]
53. coMOTIF: a mixture framework for identifying transcription factor and a coregulator motif in ChIP-seq data. Xu M; Weinberg CR; Umbach DM; Li L Bioinformatics; 2011 Oct; 27(19):2625-32. PubMed ID: 21775309 [TBL] [Abstract][Full Text] [Related]
54. Sequential Integration of Fuzzy Clustering and Expectation Maximization for Transcription Factor Binding Site Identification. Yousefian-Jazi A; Choi J J Comput Biol; 2018 Nov; 25(11):1247-1256. PubMed ID: 30133315 [TBL] [Abstract][Full Text] [Related]
55. TherMos: Estimating protein-DNA binding energies from in vivo binding profiles. Sun W; Hu X; Lim MH; Ng CK; Choo SH; Castro DS; Drechsel D; Guillemot F; Kolatkar PR; Jauch R; Prabhakar S Nucleic Acids Res; 2013 Jun; 41(11):5555-68. PubMed ID: 23595148 [TBL] [Abstract][Full Text] [Related]
56. CENTDIST: discovery of co-associated factors by motif distribution. Zhang Z; Chang CW; Goh WL; Sung WK; Cheung E Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W391-9. PubMed ID: 21602269 [TBL] [Abstract][Full Text] [Related]
57. MotifLab: a tools and data integration workbench for motif discovery and regulatory sequence analysis. Klepper K; Drabløs F BMC Bioinformatics; 2013 Jan; 14():9. PubMed ID: 23323883 [TBL] [Abstract][Full Text] [Related]
58. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data. Levitsky V; Oshchepkov D; Zemlyanskaya E; Merkulova T Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825662 [TBL] [Abstract][Full Text] [Related]
59. Identification of C2H2-ZF binding preferences from ChIP-seq data using RCADE. Najafabadi HS; Albu M; Hughes TR Bioinformatics; 2015 Sep; 31(17):2879-81. PubMed ID: 25953800 [TBL] [Abstract][Full Text] [Related]
60. Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium. Wang J; Zhuang J; Iyer S; Lin XY; Greven MC; Kim BH; Moore J; Pierce BG; Dong X; Virgil D; Birney E; Hung JH; Weng Z Nucleic Acids Res; 2013 Jan; 41(Database issue):D171-6. PubMed ID: 23203885 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]