These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. The nervous system tunes sensorimotor gains when reaching in variable mechanical environments. Maurus P; Jackson K; Cashaback JGA; Cluff T iScience; 2023 Jun; 26(6):106756. PubMed ID: 37213228 [TBL] [Abstract][Full Text] [Related]
43. Voluntary muscle coactivation in quiet standing elicits reciprocal rather than coactive agonist-antagonist control of reactive balance. Martino G; Beck ON; Ting LH J Neurophysiol; 2023 Jun; 129(6):1378-1388. PubMed ID: 37162064 [TBL] [Abstract][Full Text] [Related]
44. Assistive Loading Promotes Goal-Directed Tuning of Stretch Reflex Gains. Torell F; Franklin S; Franklin DW; Dimitriou M eNeuro; 2023 Feb; 10(2):. PubMed ID: 36781230 [TBL] [Abstract][Full Text] [Related]
45. When intercepting moving targets, mid-movement error corrections reflect distinct responses to visual and haptic perturbations. Gonzalez Polanco P; Mrotek LA; Nielson KA; Beardsley SA; Scheidt RA Exp Brain Res; 2023 Jan; 241(1):231-247. PubMed ID: 36469052 [TBL] [Abstract][Full Text] [Related]
46. What is the contribution of voluntary and reflex processes to sensorimotor control of balance? Cherif A; Zenzeri J; Loram I Front Bioeng Biotechnol; 2022; 10():973716. PubMed ID: 36246368 [TBL] [Abstract][Full Text] [Related]
47. An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise. Van Wouwe T; Ting LH; De Groote F PLoS Comput Biol; 2022 Jun; 18(6):e1009338. PubMed ID: 35675227 [TBL] [Abstract][Full Text] [Related]
48. Neural Correlates of Multisensory Integration for Feedback Stabilization of the Wrist. Suminski AJ; Doudlah RC; Scheidt RA Front Integr Neurosci; 2022; 16():815750. PubMed ID: 35600223 [TBL] [Abstract][Full Text] [Related]
49. NT3 treatment alters spinal cord injury-induced changes in the gray matter volume of rhesus monkey cortex. Bao SS; Zhao C; Chen HW; Feng T; Guo XJ; Xu M; Rao JS Sci Rep; 2022 Apr; 12(1):5919. PubMed ID: 35396344 [TBL] [Abstract][Full Text] [Related]
50. Preparing to move: Setting initial conditions to simplify interactions with complex objects. Nayeem R; Bazzi S; Sadeghi M; Hogan N; Sternad D PLoS Comput Biol; 2021 Dec; 17(12):e1009597. PubMed ID: 34919539 [TBL] [Abstract][Full Text] [Related]
51. Trunk Angle Modulates Feedforward and Feedback Control during Single-Limb Squatting. Johnson KA; Nozu S; Shields RK J Funct Morphol Kinesiol; 2021 Oct; 6(4):. PubMed ID: 34698186 [TBL] [Abstract][Full Text] [Related]
52. Neurophysiology of slip sensation and grip reaction: insights for hand prosthesis control of slippage. Zangrandi A; D'Alonzo M; Cipriani C; Di Pino G J Neurophysiol; 2021 Aug; 126(2):477-492. PubMed ID: 34232750 [TBL] [Abstract][Full Text] [Related]
53. Effects of Perturbation Velocity, Direction, Background Muscle Activation, and Task Instruction on Long-Latency Responses Measured From Forearm Muscles. Weinman J; Arfa-Fatollahkhani P; Zonnino A; Nikonowicz RC; Sergi F Front Hum Neurosci; 2021; 15():639773. PubMed ID: 33935670 [TBL] [Abstract][Full Text] [Related]
54. Interactions between initial posture and task-level goal explain experimental variability in postural responses to perturbations of standing balance. Van Wouwe T; Ting LH; De Groote F J Neurophysiol; 2021 Feb; 125(2):586-598. PubMed ID: 33326357 [TBL] [Abstract][Full Text] [Related]
55. Vata dynamics with special reference to cardiac disorders - A cross-disciplinary approach. Baikampady SV J Ayurveda Integr Med; 2020; 11(4):432-439. PubMed ID: 33218848 [TBL] [Abstract][Full Text] [Related]
56. Impact of Experimental Tonic Pain on Corrective Motor Responses to Mechanical Perturbations. Traverse E; Brun C; Harnois É; Mercier C Neural Plast; 2020; 2020():8864407. PubMed ID: 32802041 [TBL] [Abstract][Full Text] [Related]
57. Neuromuscular Electrical Stimulation Primes Feedback Control During a Novel Single Leg Task. Petrie M; Johnson K; McCue P; Shields RK J Mot Behav; 2021; 53(4):409-418. PubMed ID: 32633214 [TBL] [Abstract][Full Text] [Related]
58. Interlimb Responses to Perturbations of Bilateral Movements are Asymmetric. Schaffer JE; Sainburg RL J Mot Behav; 2021; 53(2):217-233. PubMed ID: 32375601 [TBL] [Abstract][Full Text] [Related]
59. Predicting Perturbed Human Arm Movements in a Neuro-Musculoskeletal Model to Investigate the Muscular Force Response. Stollenmaier K; Ilg W; Haeufle DFB Front Bioeng Biotechnol; 2020; 8():308. PubMed ID: 32373601 [TBL] [Abstract][Full Text] [Related]
60. Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component. Soteropoulos DS; Baker SN J Neurosci; 2020 May; 40(20):3933-3948. PubMed ID: 32245828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]