BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 21543826)

  • 1. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles.
    Huang R; Su R; Qi W; Zhao J; He Z
    Nanotechnology; 2011 Jun; 22(24):245609. PubMed ID: 21543826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetically controlled self-assembly of redox-active ferrocene-diphenylalanine: from nanospheres to nanofibers.
    Wang Y; Huang R; Qi W; Wu Z; Su R; He Z
    Nanotechnology; 2013 Nov; 24(46):465603. PubMed ID: 24157576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Piezoelectric Properties of Self-Assembled Fmoc-FF Peptide Fibrous Networks.
    Ryan K; Beirne J; Redmond G; Kilpatrick JI; Guyonnet J; Buchete NV; Kholkin AL; Rodriguez BJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12702-7. PubMed ID: 25994251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Solvent Choice on the Self-Assembly Properties of a Diphenylalanine Amphiphile Stabilized by an Ion Pair.
    Mayans E; Ballano G; Sendros J; Font-Bardia M; Campos JL; Puiggalí J; Cativiela C; Alemán C
    Chemphyschem; 2017 Jul; 18(14):1888-1896. PubMed ID: 28374964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary Force-Driven, Hierarchical Co-Assembly of Dandelion-Like Peptide Microstructures.
    Wang Y; Huang R; Qi W; Xie Y; Wang M; Su R; He Z
    Small; 2015 Jun; 11(24):2893-902. PubMed ID: 25759325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface self-assembly of N-fluorenyl-9-methoxycarbonyl diphenylalanine on silica wafer.
    Liu Y; Xu XD; Chen JX; Cheng H; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):192-7. PubMed ID: 21612897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties.
    Li Q; Jia Y; Dai L; Yang Y; Li J
    ACS Nano; 2015 Mar; 9(3):2689-95. PubMed ID: 25759013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured peptide fibrils formed at the organic-aqueous interface and their use as templates to prepare inorganic nanostructures.
    Biswas K; Rao CN
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):811-5. PubMed ID: 20356006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.
    Dinesh B; Squillaci MA; Ménard-Moyon C; Samorì P; Bianco A
    Nanoscale; 2015 Oct; 7(38):15873-9. PubMed ID: 26359907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release.
    Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T
    J Control Release; 2010 Mar; 142(3):354-60. PubMed ID: 19932721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A BODIPY biosensor to detect and drive self-assembly of diphenylalanine.
    Quan L; Gu J; Lin W; Wei Y; Lin Y; Liu L; Ding H; Pan C; Xie Z; Wu T
    Chem Commun (Camb); 2019 Jul; 55(59):8564-8566. PubMed ID: 31271158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation.
    Handelman A; Natan A; Rosenman G
    J Pept Sci; 2014 Jul; 20(7):487-93. PubMed ID: 24895323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of Fmoc-diphenylalanine inside liquid marbles.
    Braun HG; Cardoso AZ
    Colloids Surf B Biointerfaces; 2012 Sep; 97():43-50. PubMed ID: 22584262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.