These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. An implantable bi-directional brain-machine interface system for chronic neuroprosthesis research. Stanslaski S; Cong P; Carlson D; Santa W; Jensen R; Molnar G; Marks WJ; Shafquat A; Denison T Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5494-7. PubMed ID: 19965049 [TBL] [Abstract][Full Text] [Related]
3. EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb. Cincotti F; Pichiorri F; Aricò P; Aloise F; Leotta F; de Vico Fallani F; Millán Jdel R; Molinari M; Mattia D Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4112-5. PubMed ID: 23366832 [TBL] [Abstract][Full Text] [Related]
4. Retinal neurostimulator for a multifocal vision prosthesis. Wong YT; Dommel N; Preston P; Hallum LE; Lehmann T; Lovell NH; Suaning GJ IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):425-34. PubMed ID: 17894275 [TBL] [Abstract][Full Text] [Related]
5. In vivo stimulation on rabbit retina using CMOS LSI-based multi-chip flexible stimulator for retinal prosthesis. Tokuda T; Asano R; Sugitani S; Terasawa Y; Nunoshita M; Nakauchi K; Fujikado T; Tano Y; Ohta J Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5791-4. PubMed ID: 18003329 [TBL] [Abstract][Full Text] [Related]
6. Design and testing of an advanced implantable neuroprosthesis with myoelectric control. Hart RL; Bhadra N; Montague FW; Kilgore KL; Peckham PH IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):45-53. PubMed ID: 20876029 [TBL] [Abstract][Full Text] [Related]
7. A reconfigurable neural signal processor (NSP) for brain machine interfaces. Darmanjian S; Cieslewski G; Morrison S; Dang B; Gugel K; Principe J Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2502-5. PubMed ID: 17946962 [TBL] [Abstract][Full Text] [Related]
8. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease. Swann NC; de Hemptinne C; Miocinovic S; Qasim S; Ostrem JL; Galifianakis NB; Luciano MS; Wang SS; Ziman N; Taylor R; Starr PA J Neurosurg; 2018 Feb; 128(2):605-616. PubMed ID: 28409730 [TBL] [Abstract][Full Text] [Related]
9. Multidimensional control using a mobile-phone based brain-muscle-computer interface. Vernon S; Joshi SS Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5188-94. PubMed ID: 22255507 [TBL] [Abstract][Full Text] [Related]
10. The Principle of the Micro-Electronic Neural Bridge and a Prototype System Design. Huang ZH; Wang ZG; Lu XY; Li WY; Zhou YX; Shen XY; Zhao XT IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):180-91. PubMed ID: 26276996 [TBL] [Abstract][Full Text] [Related]
11. Closing the loop for Deep Brain Stimulation implants enables personalized healthcare for Parkinson's disease patients. Eberle W; Penders J; Yazicioglu RF Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1556-8. PubMed ID: 22254618 [TBL] [Abstract][Full Text] [Related]
12. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems. Zumsteg ZS; Kemere C; O'Driscoll S; Santhanam G; Ahmed RE; Shenoy KV; Meng TH IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):272-9. PubMed ID: 16200751 [TBL] [Abstract][Full Text] [Related]
13. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
14. Benchtop and bedside validation of a low-cost programmable cortical stimulator in a testbed for bi-directional brain-computer-interface research. Sohn WJ; Lim J; Wang PT; Pu H; Malekzadeh-Arasteh O; Shaw SJ; Armacost M; Gong H; Kellis S; Andersen RA; Liu CY; Heydari P; Nenadic Z; Do AH Front Neurosci; 2022; 16():1075971. PubMed ID: 36711153 [TBL] [Abstract][Full Text] [Related]
15. Silicon LSI-based smart stimulators for retinal prosthesis. Ohta J; Tokuda T; Kagawa K; Furumiya T; Uehara A; Terasawa Y; Ozawa M; Fujikado T; Tano Y IEEE Eng Med Biol Mag; 2006; 25(5):47-59. PubMed ID: 17020199 [No Abstract] [Full Text] [Related]
16. Implantable biomimetic microelectronic systems design. Liu W; Sivaprakasam M; Wang G; Zhou M; Granacki J; LaCoss J; Wills J IEEE Eng Med Biol Mag; 2005; 24(5):66-74. PubMed ID: 16248119 [No Abstract] [Full Text] [Related]
17. Closed loop deep brain stimulation: an evolving technology. Hosain MK; Kouzani A; Tye S Australas Phys Eng Sci Med; 2014 Dec; 37(4):619-34. PubMed ID: 25195055 [TBL] [Abstract][Full Text] [Related]
18. Seizure Suppression Efficacy of Closed-Loop Versus Open-Loop Deep Brain Stimulation in a Rodent Model of Epilepsy. Salam MT; Perez Velazquez JL; Genov R IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):710-9. PubMed ID: 26571534 [TBL] [Abstract][Full Text] [Related]
19. Design of a programmable multi-pattern FES system for restoring foot drop in stroke rehabilitation. Sabut SK; Kumar R; Mahadevappa M J Med Eng Technol; 2010 Apr; 34(3):217-23. PubMed ID: 20170354 [TBL] [Abstract][Full Text] [Related]