These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2154399)

  • 41. Different pulse shapes to obtain small fiber selective activation by anodal blocking--a simulation study.
    Vucković A; Rijkhoff NJ; Struijk JJ
    IEEE Trans Biomed Eng; 2004 May; 51(5):698-706. PubMed ID: 15132495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of changes in asymmetry, duration and propagation velocity of the intracellular potential on the power spectrum of extracellular potentials produced by an excitable fiber.
    Dimitrov GV; Lateva ZC; Dimitrova NA
    Electromyogr Clin Neurophysiol; 1988; 28(2-3):93-100. PubMed ID: 3416810
    [No Abstract]   [Full Text] [Related]  

  • 43. Extracellular potential field of a single striated muscle fibre immersed in anisotropic volume conductor.
    Dimitrov GV; Dimitrova NA
    Electromyogr Clin Neurophysiol; 1974; 14(5-6):423-36. PubMed ID: 4457327
    [No Abstract]   [Full Text] [Related]  

  • 44. [Relation between inter- and intracellular action potentials of frog isolates muscle fiber at various temperatures].
    Gerilovski L; Radicheva N; Gidikov A
    Biofizika; 1988; 33(5):855-9. PubMed ID: 3224113
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Nonlinear behavior of nerve fibers with constant current stimulation].
    Zhu J; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):534-7. PubMed ID: 11791300
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective stimulation of smaller fibers in a compound nerve trunk with single cathode by rectangular current pulses.
    Tai C; Jiang D
    IEEE Trans Biomed Eng; 1994 Mar; 41(3):286-91. PubMed ID: 8045582
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extracellular currents and potentials of the active myelinated nerve fiber.
    Ganapathy N; Clark JW
    Biophys J; 1987 Nov; 52(5):749-61. PubMed ID: 3427184
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Passive membrane potentials: a generalization of the theory of electrotonus.
    Hellerstein D
    Biophys J; 1968 Mar; 8(3):358-79. PubMed ID: 5759920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Propagation on a central fiber surrounded by inactive fibers in a multifibered bundle model.
    Roberge FA; Wang S; Hogues H; Leon LJ
    Ann Biomed Eng; 1996; 24(6):647-61. PubMed ID: 8923985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A mathematical model for calculating the vector magnetic field of a single muscle fiber.
    Wijesinghe RS
    Math Biosci; 1991 Mar; 103(2):245-74. PubMed ID: 1804447
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analytical solution for time-dependent potentials in a fiber stimulated by an external electrode.
    Neu WK
    Med Biol Eng Comput; 2016 Nov; 54(11):1719-1725. PubMed ID: 26965711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic field of a single muscle fiber. First measurements and a core conductor model.
    van Egeraat JM; Friedman RN; Wikswo JP
    Biophys J; 1990 Mar; 57(3):663-7. PubMed ID: 2306511
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modelling extracellular electrical stimulation: part 3. Derivation and interpretation of neural tissue equations.
    Meffin H; Tahayori B; Sergeev EN; Mareels IM; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):065004. PubMed ID: 25419585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The equivalent source description representing the extinction of an action potential at a muscle fiber ending.
    Kleinpenning PH; Gootzen TH; Van Oosterom A; Stegeman DF
    Math Biosci; 1990 Sep; 101(1):41-61. PubMed ID: 2134479
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simulation of propagation along a cylindrical bundle of cardiac tissue--I: Mathematical formulation.
    Henriquez CS; Plonsey R
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):850-60. PubMed ID: 2227972
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The bioelectrical source in computing single muscle fiber action potentials.
    van Veen BK; Wolters H; Wallinga W; Rutten WL; Boom HB
    Biophys J; 1993 May; 64(5):1492-8. PubMed ID: 8324186
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Double polarized excitable system of the nerve fiber and its action potential (author's transl)].
    Matumoto M
    Nihon Seirigaku Zasshi; 1980; 42(1):3-14. PubMed ID: 7373559
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Understanding the electrical behavior of the action potential in terms of elementary electrical sources.
    Rodriguez-Falces J
    Adv Physiol Educ; 2015 Mar; 39(1):15-26. PubMed ID: 25727465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of the afterpotentials on the shape and magnitude of the extracellular potentials generated under activation of excitable fibres.
    Dimitrov GV; Dimitrova NA
    Electromyogr Clin Neurophysiol; 1979; 19(3):249-67. PubMed ID: 467316
    [No Abstract]   [Full Text] [Related]  

  • 60. Effect of intracellular anisotropy on electrical source determination in a muscle fibre.
    Plonsey R
    Med Biol Eng Comput; 1990 Jul; 28(4):312-6. PubMed ID: 2246929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.