These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21544145)

  • 1. Body plan innovation in treehoppers through the evolution of an extra wing-like appendage.
    Prud'homme B; Minervino C; Hocine M; Cande JD; Aouane A; Dufour HD; Kassner VA; Gompel N
    Nature; 2011 May; 473(7345):83-6. PubMed ID: 21544145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On dorsal prothoracic appendages in treehoppers (Hemiptera: Membracidae) and the nature of morphological evidence.
    Mikó I; Friedrich F; Yoder MJ; Hines HM; Deitz LL; Bertone MA; Seltmann KC; Wallace MS; Deans AR
    PLoS One; 2012; 7(1):e30137. PubMed ID: 22272287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-option of wing-patterning genes underlies the evolution of the treehopper helmet.
    Fisher CR; Wegrzyn JL; Jockusch EL
    Nat Ecol Evol; 2020 Feb; 4(2):250-260. PubMed ID: 31819237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decapentaplegic function in wing vein development and wing morph transformation in brown planthopper, Nilaparvata lugens.
    Li X; Liu F; Wu C; Zhao J; Cai W; Hua H
    Dev Biol; 2019 May; 449(2):143-150. PubMed ID: 30844377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution.
    Martin A; Reed RD
    Mol Biol Evol; 2010 Dec; 27(12):2864-78. PubMed ID: 20624848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in
    Linz DM; Tomoyasu Y
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):E658-E667. PubMed ID: 29317537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrabithorax function in butterfly wings and the evolution of insect wing patterns.
    Weatherbee SD; Nijhout HF; Grunert LW; Halder G; Galant R; Selegue J; Carroll S
    Curr Biol; 1999 Feb; 9(3):109-15. PubMed ID: 10021383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of Ultrabithorax in the wing-dimorphic planthopper Nilaparvata lugens (Stål, 1854) (Hemiptera: Delphacidae).
    Fu SJ; Zhang JL; Chen SJ; Chen HH; Liu YL; Xu HJ
    Gene; 2020 May; 737():144446. PubMed ID: 32035241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of patterning of serially homologous appendages in insects.
    Jockusch EL; Williams TA; Nagy LM
    Dev Genes Evol; 2004 Jul; 214(7):324-38. PubMed ID: 15170569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of growth regulation and appendage patterning genes in the morphogenesis of treehopper pronota.
    Kudla AM; Miranda X; Nijhout HF
    Proc Biol Sci; 2022 Jun; 289(1976):20212682. PubMed ID: 35673859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum.
    Smith FW; Jockusch EL
    Dev Biol; 2014 Nov; 395(1):182-97. PubMed ID: 25195194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed analysis of the prothoracic tissues transforming into wings in the Cephalothorax mutants of the Tribolium beetle.
    Clark-Hachtel CM; Moe MR; Tomoyasu Y
    Arthropod Struct Dev; 2018 Jul; 47(4):352-361. PubMed ID: 29913217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The function of appendage patterning genes in mandible development of the sexually dimorphic stag beetle.
    Gotoh H; Zinna RA; Ishikawa Y; Miyakawa H; Ishikawa A; Sugime Y; Emlen DJ; Lavine LC; Miura T
    Dev Biol; 2017 Feb; 422(1):24-32. PubMed ID: 27989519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooption of an appendage-patterning gene cassette in the head segmentation of arachnids.
    Setton EVW; Sharma PP
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3491-E3500. PubMed ID: 29581309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative developmental genetics and the evolution of arthropod body plans.
    Angelini DR; Kaufman TC
    Annu Rev Genet; 2005; 39():95-119. PubMed ID: 16285854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects.
    Angelini DR; Kaufman TC
    Dev Biol; 2004 Jul; 271(2):306-21. PubMed ID: 15223336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crustacean appendage evolution associated with changes in Hox gene expression.
    Averof M; Patel NH
    Nature; 1997 Aug; 388(6643):682-6. PubMed ID: 9262403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex-specific gene interactions in the patterning of insect genitalia.
    Aspiras AC; Smith FW; Angelini DR
    Dev Biol; 2011 Dec; 360(2):369-80. PubMed ID: 21996282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neofunctionalization of a second insulin receptor gene in the wing-dimorphic planthopper, Nilaparvata lugens.
    Xue WH; Xu N; Chen SJ; Liu XY; Zhang JL; Xu HJ
    PLoS Genet; 2021 Jun; 17(6):e1009653. PubMed ID: 34181658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hox3/zen and the evolution of extraembryonic epithelia in insects.
    Schmidt-Ott U; Rafiqi AM; Lemke S
    Adv Exp Med Biol; 2010; 689():133-44. PubMed ID: 20795328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.