These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 21544222)
1. Bioinspired Strong and Highly Porous Glass Scaffolds. Fu Q; Saiz E; Tomsia AP Adv Funct Mater; 2011 Mar; 21(6):1058-1063. PubMed ID: 21544222 [TBL] [Abstract][Full Text] [Related]
2. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Fu Q; Saiz E; Tomsia AP Acta Biomater; 2011 Oct; 7(10):3547-54. PubMed ID: 21745606 [TBL] [Abstract][Full Text] [Related]
3. Toward Strong and Tough Glass and Ceramic Scaffolds for Bone Repair. Fu Q; Saiz E; Rahaman MN; Tomsia AP Adv Funct Mater; 2013 Nov; 23(44):5461-5476. PubMed ID: 29527148 [TBL] [Abstract][Full Text] [Related]
4. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Roohani-Esfahani SI; Newman P; Zreiqat H Sci Rep; 2016 Jan; 6():19468. PubMed ID: 26782020 [TBL] [Abstract][Full Text] [Related]
5. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior. Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654 [TBL] [Abstract][Full Text] [Related]
6. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
8. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Kolan KC; Leu MC; Hilmas GE; Brown RF; Velez M Biofabrication; 2011 Jun; 3(2):025004. PubMed ID: 21636879 [TBL] [Abstract][Full Text] [Related]
10. Hierarchical Porous Ceramics with Distinctive Microstructures by Emulsion-Based Direct Ink Writing. Liu Q; Zhai W ACS Appl Mater Interfaces; 2022 Jul; 14(28):32196-32205. PubMed ID: 35786835 [TBL] [Abstract][Full Text] [Related]
11. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
12. Bone 'spackling' paste: Mechanical properties and in vitro response of a porous ceramic composite bone tissue scaffold. Guzzo CM; Nychka JA J Mech Behav Biomed Mater; 2020 Dec; 112():103958. PubMed ID: 32841832 [TBL] [Abstract][Full Text] [Related]
13. Compressive Strength Enhancement of Carbon Nanotube Reinforced 13-93B1 Bioactive Glass Scaffolds. Dixit K; Sinha N J Nanosci Nanotechnol; 2019 May; 19(5):2738-2746. PubMed ID: 30501774 [TBL] [Abstract][Full Text] [Related]
14. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960 [TBL] [Abstract][Full Text] [Related]
15. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727 [TBL] [Abstract][Full Text] [Related]
16. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Tang W; Lin D; Yu Y; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Mar; 32():309-323. PubMed ID: 26689464 [TBL] [Abstract][Full Text] [Related]
17. Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability. Foroughi AH; Razavi MJ Acta Biomater; 2022 Jul; 146():317-340. PubMed ID: 35533924 [TBL] [Abstract][Full Text] [Related]
18. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Zhao J; Xiao S; Lu X; Wang J; Weng J Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404 [TBL] [Abstract][Full Text] [Related]
19. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of biodegradable Zn scaffold by vacuum heating-press sintering for bone repair. Yao R; Han S; Sun Y; Zhao Y; Shan R; Liu L; Yao X; Hang R Biomater Adv; 2022 Jul; 138():212968. PubMed ID: 35913245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]