These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 2154454)

  • 1. Spin trapping evidence for the lack of significant hydroxyl radical production during the respiration burst of human phagocytes using a spin adduct resistant to superoxide-mediated destruction.
    Britigan BE; Coffman TJ; Buettner GR
    J Biol Chem; 1990 Feb; 265(5):2650-6. PubMed ID: 2154454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-trapping and human neutrophils. Limits of detection of hydroxyl radical.
    Pou S; Cohen MS; Britigan BE; Rosen GM
    J Biol Chem; 1989 Jul; 264(21):12299-302. PubMed ID: 2545706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulated human neutrophils limit iron-catalyzed hydroxyl radical formation as detected by spin-trapping techniques.
    Britigan BE; Rosen GM; Thompson BY; Chai Y; Cohen MS
    J Biol Chem; 1986 Dec; 261(36):17026-32. PubMed ID: 3023380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical production by stimulated neutrophils reappraised.
    Samuni A; Black CD; Krishna CM; Malech HL; Bernstein EF; Russo A
    J Biol Chem; 1988 Sep; 263(27):13797-801. PubMed ID: 2843536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes.
    Ramos CL; Pou S; Britigan BE; Cohen MS; Rosen GM
    J Biol Chem; 1992 Apr; 267(12):8307-12. PubMed ID: 1314821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do human neutrophils make hydroxyl radical? Determination of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry.
    Britigan BE; Rosen GM; Chai Y; Cohen MS
    J Biol Chem; 1986 Apr; 261(10):4426-31. PubMed ID: 3007455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the radical trapping activity of a novel series of cyclic nitrone spin traps.
    Thomas CE; Ohlweiler DF; Carr AA; Nieduzak TR; Hay DA; Adams G; Vaz R; Bernotas RC
    J Biol Chem; 1996 Feb; 271(6):3097-104. PubMed ID: 8621707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical generation by red tide algae.
    Oda T; Akaike T; Sato K; Ishimatsu A; Takeshita S; Muramatsu T; Maeda H
    Arch Biochem Biophys; 1992 Apr; 294(1):38-43. PubMed ID: 1312810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of phagocyte-derived free radicals with spin trapping techniques: effect of temperature and cellular metabolism.
    Rosen GM; Britigan BE; Cohen MS; Ellington SP; Barber MJ
    Biochim Biophys Acta; 1988 May; 969(3):236-41. PubMed ID: 2835986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutrophil degranulation inhibits potential hydroxyl-radical formation. Relative impact of myeloperoxidase and lactoferrin release on hydroxyl-radical production by iron-supplemented neutrophils assessed by spin-trapping techniques.
    Britigan BE; Hassett DJ; Rosen GM; Hamill DR; Cohen MS
    Biochem J; 1989 Dec; 264(2):447-55. PubMed ID: 2557840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of oxygen-centered radicals by neutrophils and macrophages as studied by electron spin resonance (ESR).
    Bannister JV; Bannister WH
    Environ Health Perspect; 1985 Dec; 64():37-43. PubMed ID: 3007099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of spin-traps by chlorine dioxide (ClO2) radical in aqueous solutions: first ESR evidence of formation of new nitroxide radicals.
    Ozawa T; Miura Y; Ueda J
    Free Radic Biol Med; 1996; 20(6):837-41. PubMed ID: 8728032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-trapping of superoxide by 5,5-dimethyl-1-pyrroline N-oxide: application to isolated perfused organs.
    Pou S; Rosen GM
    Anal Biochem; 1990 Nov; 190(2):321-5. PubMed ID: 1963276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reevaluation of the spin-trapped adduct formed from 5,5-dimethyl-1-pyrroline-1-oxide during the respiratory burst in neutrophils.
    Ueno I; Kohno M; Mitsuta K; Mizuta Y; Kanegasaki S
    J Biochem; 1989 Jun; 105(6):905-10. PubMed ID: 2549020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin trapping study on the kinetics of Fe2+ autoxidation: formation of spin adducts and their destruction by superoxide.
    Kosaka H; Katsuki Y; Shiga T
    Arch Biochem Biophys; 1992 Mar; 293(2):401-8. PubMed ID: 1311166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps.
    Abbas K; Hardy M; Poulhès F; Karoui H; Tordo P; Ouari O; Peyrot F
    Free Radic Biol Med; 2014 Jun; 71():281-290. PubMed ID: 24662195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the origin of the hydroxyl spin adduct of DMPO produced from the stimulation of neutrophils by phorbol-12-myristate-13-acetate.
    Janzen EG; Jandrisits LT; Barber DL
    Free Radic Res Commun; 1987; 4(2):115-23. PubMed ID: 2854101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts.
    Finkelstein E; Rosen GM; Rauckman EJ
    Mol Pharmacol; 1982 Mar; 21(2):262-5. PubMed ID: 6285165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The production of oxygen-centered radicals by bacillus-Calmette-Guerin-activated macrophages. An electron paramagnetic resonance study of the response to phorbol myristate acetate.
    Hume DA; Gordon S; Thornalley PJ; Bannister JV
    Biochim Biophys Acta; 1983 Oct; 763(3):245-50. PubMed ID: 6313069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.