BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 2154454)

  • 1. Spin trapping evidence for the lack of significant hydroxyl radical production during the respiration burst of human phagocytes using a spin adduct resistant to superoxide-mediated destruction.
    Britigan BE; Coffman TJ; Buettner GR
    J Biol Chem; 1990 Feb; 265(5):2650-6. PubMed ID: 2154454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-trapping and human neutrophils. Limits of detection of hydroxyl radical.
    Pou S; Cohen MS; Britigan BE; Rosen GM
    J Biol Chem; 1989 Jul; 264(21):12299-302. PubMed ID: 2545706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulated human neutrophils limit iron-catalyzed hydroxyl radical formation as detected by spin-trapping techniques.
    Britigan BE; Rosen GM; Thompson BY; Chai Y; Cohen MS
    J Biol Chem; 1986 Dec; 261(36):17026-32. PubMed ID: 3023380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical production by stimulated neutrophils reappraised.
    Samuni A; Black CD; Krishna CM; Malech HL; Bernstein EF; Russo A
    J Biol Chem; 1988 Sep; 263(27):13797-801. PubMed ID: 2843536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes.
    Ramos CL; Pou S; Britigan BE; Cohen MS; Rosen GM
    J Biol Chem; 1992 Apr; 267(12):8307-12. PubMed ID: 1314821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do human neutrophils make hydroxyl radical? Determination of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry.
    Britigan BE; Rosen GM; Chai Y; Cohen MS
    J Biol Chem; 1986 Apr; 261(10):4426-31. PubMed ID: 3007455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the radical trapping activity of a novel series of cyclic nitrone spin traps.
    Thomas CE; Ohlweiler DF; Carr AA; Nieduzak TR; Hay DA; Adams G; Vaz R; Bernotas RC
    J Biol Chem; 1996 Feb; 271(6):3097-104. PubMed ID: 8621707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical generation by red tide algae.
    Oda T; Akaike T; Sato K; Ishimatsu A; Takeshita S; Muramatsu T; Maeda H
    Arch Biochem Biophys; 1992 Apr; 294(1):38-43. PubMed ID: 1312810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of phagocyte-derived free radicals with spin trapping techniques: effect of temperature and cellular metabolism.
    Rosen GM; Britigan BE; Cohen MS; Ellington SP; Barber MJ
    Biochim Biophys Acta; 1988 May; 969(3):236-41. PubMed ID: 2835986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutrophil degranulation inhibits potential hydroxyl-radical formation. Relative impact of myeloperoxidase and lactoferrin release on hydroxyl-radical production by iron-supplemented neutrophils assessed by spin-trapping techniques.
    Britigan BE; Hassett DJ; Rosen GM; Hamill DR; Cohen MS
    Biochem J; 1989 Dec; 264(2):447-55. PubMed ID: 2557840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of oxygen-centered radicals by neutrophils and macrophages as studied by electron spin resonance (ESR).
    Bannister JV; Bannister WH
    Environ Health Perspect; 1985 Dec; 64():37-43. PubMed ID: 3007099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of spin-traps by chlorine dioxide (ClO2) radical in aqueous solutions: first ESR evidence of formation of new nitroxide radicals.
    Ozawa T; Miura Y; Ueda J
    Free Radic Biol Med; 1996; 20(6):837-41. PubMed ID: 8728032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-trapping of superoxide by 5,5-dimethyl-1-pyrroline N-oxide: application to isolated perfused organs.
    Pou S; Rosen GM
    Anal Biochem; 1990 Nov; 190(2):321-5. PubMed ID: 1963276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reevaluation of the spin-trapped adduct formed from 5,5-dimethyl-1-pyrroline-1-oxide during the respiratory burst in neutrophils.
    Ueno I; Kohno M; Mitsuta K; Mizuta Y; Kanegasaki S
    J Biochem; 1989 Jun; 105(6):905-10. PubMed ID: 2549020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin trapping study on the kinetics of Fe2+ autoxidation: formation of spin adducts and their destruction by superoxide.
    Kosaka H; Katsuki Y; Shiga T
    Arch Biochem Biophys; 1992 Mar; 293(2):401-8. PubMed ID: 1311166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps.
    Abbas K; Hardy M; Poulhès F; Karoui H; Tordo P; Ouari O; Peyrot F
    Free Radic Biol Med; 2014 Jun; 71():281-290. PubMed ID: 24662195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the origin of the hydroxyl spin adduct of DMPO produced from the stimulation of neutrophils by phorbol-12-myristate-13-acetate.
    Janzen EG; Jandrisits LT; Barber DL
    Free Radic Res Commun; 1987; 4(2):115-23. PubMed ID: 2854101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts.
    Finkelstein E; Rosen GM; Rauckman EJ
    Mol Pharmacol; 1982 Mar; 21(2):262-5. PubMed ID: 6285165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The production of oxygen-centered radicals by bacillus-Calmette-Guerin-activated macrophages. An electron paramagnetic resonance study of the response to phorbol myristate acetate.
    Hume DA; Gordon S; Thornalley PJ; Bannister JV
    Biochim Biophys Acta; 1983 Oct; 763(3):245-50. PubMed ID: 6313069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.