These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 21544617)
1. Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. Zill SN; Büschges A; Schmitz J J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):851-67. PubMed ID: 21544617 [TBL] [Abstract][Full Text] [Related]
2. Directional specificity and encoding of muscle forces and loads by stick insect tibial campaniform sensilla, including receptors with round cuticular caps. Zill SN; Chaudhry S; Büschges A; Schmitz J Arthropod Struct Dev; 2013 Nov; 42(6):455-467. PubMed ID: 24126203 [TBL] [Abstract][Full Text] [Related]
3. Force encoding in stick insect legs delineates a reference frame for motor control. Zill SN; Schmitz J; Chaudhry S; Büschges A J Neurophysiol; 2012 Sep; 108(5):1453-72. PubMed ID: 22673329 [TBL] [Abstract][Full Text] [Related]
4. Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects. Zill SN; Dallmann CJ; Zyhowski W; Chaudhry H; Gebehart C; Szczecinski NS J Neurophysiol; 2024 Feb; 131(2):198-215. PubMed ID: 38166479 [TBL] [Abstract][Full Text] [Related]
5. Identification of the origin of force-feedback signals influencing motor neurons of the thoraco-coxal joint in an insect. Haberkorn A; Gruhn M; Zill SN; Büschges A J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Apr; 205(2):253-270. PubMed ID: 30976919 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli. Zill SN; Dallmann CJ; S Szczecinski N; Büschges A; Schmitz J J Neurophysiol; 2021 Jul; 126(1):227-248. PubMed ID: 34107221 [TBL] [Abstract][Full Text] [Related]
7. Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches. Noah JA; Quimby L; Frazier SF; Zill SN J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Mar; 190(3):201-15. PubMed ID: 14727134 [TBL] [Abstract][Full Text] [Related]
8. Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Zill SN; Neff D; Chaudhry S; Exter A; Schmitz J; Büschges A Arthropod Struct Dev; 2017 Jul; 46(4):564-578. PubMed ID: 28552666 [TBL] [Abstract][Full Text] [Related]
9. Sensory signals of unloading in insects are tuned to distinguish leg slipping from load variations in gait: experimental and modeling studies. Harris CM; Szczecinski NS; Büschges A; Zill SN J Neurophysiol; 2022 Oct; 128(4):790-807. PubMed ID: 36043841 [TBL] [Abstract][Full Text] [Related]
10. Positive force feedback in development of substrate grip in the stick insect tarsus. Zill SN; Chaudhry S; Exter A; Büschges A; Schmitz J Arthropod Struct Dev; 2014 Sep; 43(5):441-55. PubMed ID: 24951882 [TBL] [Abstract][Full Text] [Related]
12. Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion. Ridgel AL; Frazier SF; DiCaprio RA; Zill SN J Comp Physiol A; 2000 Apr; 186(4):359-74. PubMed ID: 10798724 [TBL] [Abstract][Full Text] [Related]
13. A load-based mechanism for inter-leg coordination in insects. Dallmann CJ; Hoinville T; Dürr V; Schmitz J Proc Biol Sci; 2017 Dec; 284(1868):. PubMed ID: 29187626 [TBL] [Abstract][Full Text] [Related]
14. Activity and directional sensitivity of leg campaniform sensilla in a stick insect. Delcomyn F J Comp Physiol A; 1991 Jan; 168(1):113-9. PubMed ID: 2033563 [TBL] [Abstract][Full Text] [Related]
15. Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. Hess D; Büschges A J Neurophysiol; 1999 Apr; 81(4):1856-65. PubMed ID: 10200220 [TBL] [Abstract][Full Text] [Related]
16. A computational model of insect campaniform sensilla predicts encoding of forces during walking. Szczecinski NS; Dallmann CJ; Quinn RD; Zill SN Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34384067 [TBL] [Abstract][Full Text] [Related]
17. The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. Akay T; Bässler U; Gerharz P; Büschges A J Neurophysiol; 2001 Feb; 85(2):594-604. PubMed ID: 11160496 [TBL] [Abstract][Full Text] [Related]
18. Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches. Keller BR; Duke ER; Amer AS; Zill SN J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Aug; 193(8):881-91. PubMed ID: 17541783 [TBL] [Abstract][Full Text] [Related]
19. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. Akay T; Büschges A J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989 [TBL] [Abstract][Full Text] [Related]
20. Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg. Gebehart C; Hooper SL; Büschges A Curr Biol; 2022 Sep; 32(17):3847-3854.e3. PubMed ID: 35896118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]