BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2154463)

  • 1. Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides.
    Chou MM; Kendall DA
    J Biol Chem; 1990 Feb; 265(5):2873-80. PubMed ID: 2154463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal sequences containing multiple aromatic residues.
    Rusch SL; Kendall DA
    J Mol Biol; 1992 Mar; 224(1):77-85. PubMed ID: 1548710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Titration of protein transport activity by incremental changes in signal peptide hydrophobicity.
    Doud SK; Chou MM; Kendall DA
    Biochemistry; 1993 Feb; 32(5):1251-6. PubMed ID: 8448135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and conformational properties of synthetic idealized signal sequences parallel their biological function.
    Izard JW; Doughty MB; Kendall DA
    Biochemistry; 1995 Aug; 34(31):9904-12. PubMed ID: 7632690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli signal peptides direct inefficient secretion of an outer membrane protein (OmpA) and periplasmic proteins (maltose-binding protein, ribose-binding protein, and alkaline phosphatase) in Bacillus subtilis.
    Collier DN
    J Bacteriol; 1994 May; 176(10):3013-20. PubMed ID: 8188602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional decaisoleucine-containing signal sequence. Construction by cassette mutagenesis.
    Kendall DA; Kaiser ET
    J Biol Chem; 1988 May; 263(15):7261-5. PubMed ID: 3284884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional limits of conformation, hydrophobicity, and steric constraints in prokaryotic signal peptide cleavage regions. Wild type transport by a simple polymeric signal sequence.
    Laforet GA; Kendall DA
    J Biol Chem; 1991 Jan; 266(2):1326-34. PubMed ID: 1898733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal peptide subsegments are not always functionally interchangeable. M13 procoat hydrophobic core fails to transport alkaline phosphatase in Escherichia coli.
    Laforet GA; Kaiser ET; Kendall DA
    J Biol Chem; 1989 Aug; 264(24):14478-85. PubMed ID: 2668291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of protein translocation across the membrane by specific mutations in the hydrophobic region of the signal peptide.
    Goldstein J; Lehnhardt S; Inouye M
    J Bacteriol; 1990 Mar; 172(3):1225-31. PubMed ID: 2407717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative analysis of single- and multiple-residue substitutions in the alkaline phosphatase signal peptide.
    Kendall DA; Doud SK; Kaiser ET
    Biopolymers; 1990 Jan; 29(1):139-47. PubMed ID: 2183883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal peptide cleavage regions. Functional limits on length and topological implications.
    Jain RG; Rusch SL; Kendall DA
    J Biol Chem; 1994 Jun; 269(23):16305-10. PubMed ID: 8206936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region.
    Karamyshev AL; Karamysheva ZN; Kajava AV; Ksenzenko VN; Nesmeyanova MA
    J Mol Biol; 1998 Apr; 277(4):859-70. PubMed ID: 9545377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Treponema pallidum subspecies pallidum genes encoding signal peptides and membrane-spanning sequences using a novel alkaline phosphatase expression vector.
    Blanco DR; Giladi M; Champion CI; Haake DA; Chikami GK; Miller JN; Lovett MA
    Mol Microbiol; 1991 Oct; 5(10):2405-15. PubMed ID: 1791755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Idealization of the hydrophobic segment of the alkaline phosphatase signal peptide.
    Kendall DA; Bock SC; Kaiser ET
    Nature; 1986 Jun 12-18; 321(6071):706-8. PubMed ID: 3520341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino-terminal charge affects the periplasmic accumulation of recombinant heregulin/EGF hybrids exported using the Escherichia coli alkaline phosphatase signal sequence.
    Campion SR; Elsasser E; Chung R
    Protein Expr Purif; 1997 Aug; 10(3):331-9. PubMed ID: 9268680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of an export-defective protein by a highly hydrophobic signal peptide.
    Rusch SL; Kendall DA
    J Biol Chem; 1994 Jan; 269(2):1243-8. PubMed ID: 8288586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Juxtaposition of signal-peptide charge and core region hydrophobicity is critical for functional signal peptides.
    Rusch SL; Mascolo CL; Kebir MO; Kendall DA
    Arch Microbiol; 2002 Oct; 178(4):306-10. PubMed ID: 12209265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TnphoA: a transposon probe for protein export signals.
    Manoil C; Beckwith J
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):8129-33. PubMed ID: 2999794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of signal sequence mutations on the kinetics of alkaline phosphatase export to the periplasm in Escherichia coli.
    Michaelis S; Hunt JF; Beckwith J
    J Bacteriol; 1986 Jul; 167(1):160-7. PubMed ID: 3522543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli.
    Cristóbal S; de Gier JW; Nielsen H; von Heijne G
    EMBO J; 1999 Jun; 18(11):2982-90. PubMed ID: 10357811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.