These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2154469)

  • 1. Analysis of glucagon-receptor interactions on isolated canine hepatocytes. Formation of reversibly and irreversibly cell-associated hormone.
    Bharucha DB; Tager HS
    J Biol Chem; 1990 Feb; 265(6):3070-9. PubMed ID: 2154469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a Mg(2+)- and guanyl nucleotide-dependent glucagon receptor cycle by use of permeabilized canine hepatocytes.
    Post SR; Miyazaki H; Tager HS
    J Biol Chem; 1992 Dec; 267(36):25776-85. PubMed ID: 1334486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of glucagon and glucagon analogs with isolated canine hepatocytes.
    Hagopian WA; Tager HS; Gysin B; Trivedi D; Hruby VJ
    J Biol Chem; 1987 Nov; 262(32):15506-13. PubMed ID: 2824462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor-linked proteolysis of membrane-bound glucagon yields a membrane-associated hormone fragment.
    Sheetz MJ; Tager HS
    J Biol Chem; 1988 Jun; 263(17):8509-14. PubMed ID: 2836424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of distinct receptor complexes that account for high-and low-affinity glucagon binding to hepatic plasma membranes.
    Mason JC; Tager HS
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6835-9. PubMed ID: 2995990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent glucagon derivatives. II. The use of fluorescent glucagon derivatives for the study of receptor disposition in membranes.
    Ward LD; Cantrill RC; Heithier H; Peters R; Helmreich EJ
    Biochim Biophys Acta; 1988 Oct; 971(3):307-16. PubMed ID: 2844292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a glucagon receptor-linked protease from canine hepatic plasma membranes. Partial purification, kinetic analysis, and determination of sites for hormone processing.
    Sheetz MJ; Tager HS
    J Biol Chem; 1988 Dec; 263(35):19210-7. PubMed ID: 2848817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor binding and cell-mediated metabolism of [125I]monoiodoglucagon by isolated canine hepatocytes.
    Hagopian WA; Tager HS
    J Biol Chem; 1984 Jul; 259(14):8986-93. PubMed ID: 6086619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic identification of a two-state glucagon receptor system in isolated hepatocytes. Interconversion of homogeneous receptors.
    Horwitz EM; Jenkins WT; Hoosein NM; Gurd RS
    J Biol Chem; 1985 Aug; 260(16):9307-15. PubMed ID: 2991239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Glucagon binding by isolated chick hepatocytes].
    Ukhanova MV; Leĭbush BN
    Zh Evol Biokhim Fiziol; 1988; 24(4):509-15. PubMed ID: 2849846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucagon receptor binding, dissociation and degradation in rat liver plasma membranes studied by a microperifusion method.
    Frandsen EK; Bacchus RA
    Biochim Biophys Acta; 1987 Jun; 929(1):74-80. PubMed ID: 3036248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial agonism in the glucagon receptor system is a consequence of the two-state rat hepatic receptor.
    Horwitz EM; Wyborski RJ; Gurd RS
    J Biol Chem; 1986 Oct; 261(29):13670-6. PubMed ID: 3020041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface receptors for pancreatic hormones in dog and rat hepatocytes: qualitative and quantitative differences in hormone-target cell interactions.
    Bonnevie-Nielsen V; Polonsky KS; Jaspan JJ; Rubenstein AH; Schwartz TW; Tager HS
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2167-71. PubMed ID: 6285368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucagon binding to receptors on the surface of chicken adipocytes.
    Oscar TP
    J Anim Sci; 1995 Mar; 73(3):728-37. PubMed ID: 7608005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor binding of selectively labeled (Tyr-10) and (Tyr-13)-mono-125I-glucagons and competition by homologous 127I-labeled isomers.
    Pingoud V; Thole H
    Biochim Biophys Acta; 1987 Jul; 929(2):182-9. PubMed ID: 3036251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-ethylmaleimide uncouples the glucagon receptor from the regulatory component of adenylyl cyclase.
    Lipson KE; Kolhatkar AA; Dorato A; Donner DB
    Biochemistry; 1986 Sep; 25(19):5678-85. PubMed ID: 3022802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-mediated internalization of glucagon receptors in intact rat liver.
    Authier F; Desbuquois B; De Galle B
    Endocrinology; 1992 Jul; 131(1):447-57. PubMed ID: 1319325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation and inhibition of cAMP accumulation by glucagon in canine hepatocytes.
    Grady T; Fickova M; Tager HS; Trivedi D; Hruby VJ
    J Biol Chem; 1987 Nov; 262(32):15514-20. PubMed ID: 2824463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of internalization of glucagon by isolated hepatocytes.
    Horwitz EM; Gurd RS
    Arch Biochem Biophys; 1988 Dec; 267(2):758-69. PubMed ID: 2463785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanine nucleotide regulation of the interconversion of the two-state hepatic glucagon receptor system of rat.
    Wyborski RJ; Horwitz EM; Jenkins WT; Mormol JS; Gurd RS
    Arch Biochem Biophys; 1988 May; 262(2):532-42. PubMed ID: 2835009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.