These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 21545146)
1. Flame preparation of visible-light-responsive BiVO4 oxygen evolution photocatalysts with subsequent activation via aqueous route. Kho YK; Teoh WY; Iwase A; Mädler L; Kudo A; Amal R ACS Appl Mater Interfaces; 2011 Jun; 3(6):1997-2004. PubMed ID: 21545146 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. Liu Y; Dai H; Deng J; Zhang L; Au CT Nanoscale; 2012 Apr; 4(7):2317-25. PubMed ID: 22374295 [TBL] [Abstract][Full Text] [Related]
3. Characterization of visible-light-driven BiVO4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Zhang A; Zhang J Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(2):336-41. PubMed ID: 19321383 [TBL] [Abstract][Full Text] [Related]
4. Nanosized BiVO4 with high visible-light-induced photocatalytic activity: ultrasonic-assisted synthesis and protective effect of surfactant. Shang M; Wang W; Zhou L; Sun S; Yin W J Hazard Mater; 2009 Dec; 172(1):338-44. PubMed ID: 19632047 [TBL] [Abstract][Full Text] [Related]
5. Template-free synthesis of BiVO4 nanostructures: II. Relationship between various microstructures for monoclinic BiVO4 and their photocatalytic activity for the degradation of rhodamine B under visible light. Ren L; Ma L; Jin L; Wang JB; Qiu M; Yu Y Nanotechnology; 2009 Oct; 20(40):405602. PubMed ID: 19738297 [TBL] [Abstract][Full Text] [Related]
6. High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. Jiang H; Meng X; Dai H; Deng J; Liu Y; Zhang L; Zhao Z; Zhang R J Hazard Mater; 2012 May; 217-218():92-9. PubMed ID: 22464587 [TBL] [Abstract][Full Text] [Related]
7. Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin. Yan Y; Sun S; Song Y; Yan X; Guan W; Liu X; Shi W J Hazard Mater; 2013 Apr; 250-251():106-14. PubMed ID: 23434486 [TBL] [Abstract][Full Text] [Related]
8. CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. Yin W; Wang W; Zhou L; Sun S; Zhang L J Hazard Mater; 2010 Jan; 173(1-3):194-9. PubMed ID: 19733435 [TBL] [Abstract][Full Text] [Related]
9. Ultrasound assisted synthesis of monoclinic structured spindle BiVO4 particles with hollow structure and its photocatalytic property. Liu W; Cao L; Su G; Liu H; Wang X; Zhang L Ultrason Sonochem; 2010 Apr; 17(4):669-74. PubMed ID: 20053578 [TBL] [Abstract][Full Text] [Related]
10. Photocatalytic degradation and removal mechanism of ibuprofen via monoclinic BiVO4 under simulated solar light. Li F; Kang Y; Chen M; Liu G; Lv W; Yao K; Chen P; Huang H Chemosphere; 2016 May; 150():139-144. PubMed ID: 26901469 [TBL] [Abstract][Full Text] [Related]
11. Combination of visible-light responsive heterogeneous and homogeneous photocatalysts for water oxidation. Fukuzumi S; Kato S; Suenobu T Phys Chem Chem Phys; 2011 Oct; 13(40):17960-3. PubMed ID: 21931899 [TBL] [Abstract][Full Text] [Related]
12. Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Jia Q; Iwashina K; Kudo A Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11564-9. PubMed ID: 22699499 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation. Liu W; Yu Y; Cao L; Su G; Liu X; Zhang L; Wang Y J Hazard Mater; 2010 Sep; 181(1-3):1102-8. PubMed ID: 20576353 [TBL] [Abstract][Full Text] [Related]
14. Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO₄ photocatalysts. Bian ZY; Zhu YQ; Zhang JX; Ding AZ; Wang H Chemosphere; 2014 Dec; 117():527-31. PubMed ID: 25268078 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Xie B; Zhang H; Cai P; Qiu R; Xiong Y Chemosphere; 2006 May; 63(6):956-63. PubMed ID: 16297430 [TBL] [Abstract][Full Text] [Related]
16. Preparation of Ag doped BiVO4 film and its enhanced photoelectrocatalytic (PEC) ability of phenol degradation under visible light. Zhang X; Zhang Y; Quan X; Chen S J Hazard Mater; 2009 Aug; 167(1-3):911-4. PubMed ID: 19232823 [TBL] [Abstract][Full Text] [Related]
17. High performance B doped BiVO4 photocatalyst with visible light response by citric acid complex method. Wang M; Zheng H; Liu Q; Niu C; Che Y; Dang M Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():74-9. PubMed ID: 23751222 [TBL] [Abstract][Full Text] [Related]
18. A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution. Yang J; Wang D; Zhou X; Li C Chemistry; 2013 Jan; 19(4):1320-6. PubMed ID: 23208855 [TBL] [Abstract][Full Text] [Related]
19. Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals. Sharma R; Uma ; Singh S; Verma A; Khanuja M J Photochem Photobiol B; 2016 Sep; 162():266-272. PubMed ID: 27394009 [TBL] [Abstract][Full Text] [Related]
20. Effects of hydrothermal temperature on the microstructures of BiVO(4) and its photocatalytic O(2) evolution activity under visible light. Ke D; Peng T; Ma L; Cai P; Dai K Inorg Chem; 2009 Jun; 48(11):4685-91. PubMed ID: 19466799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]