These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21545171)

  • 1. Chrysobactin siderophores produced by Dickeya chrysanthemi EC16.
    Sandy M; Butler A
    J Nat Prod; 2011 May; 74(5):1207-12. PubMed ID: 21545171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of optically pure chrysobactin and immunoassay development.
    Lu C; Buyer JS; Okonya JF; Miller MJ
    Biometals; 1996 Oct; 9(4):377-83. PubMed ID: 8837459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chrysobactin-dependent iron acquisition in Erwinia chrysanthemi. Functional study of a homolog of the Escherichia coli ferric enterobactin esterase.
    Rauscher L; Expert D; Matzanke BF; Trautwein AX
    J Biol Chem; 2002 Jan; 277(4):2385-95. PubMed ID: 11694506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron(III) complexes of chrysobactin, the siderophore of Erwinia chrysanthemi.
    Persmark M; Neilands JB
    Biometals; 1992; 5(1):29-36. PubMed ID: 1392469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomics-driven discovery of chiral triscatechol siderophores with enantiomeric Fe(iii) coordination.
    Stow PR; Reitz ZL; Johnstone TC; Butler A
    Chem Sci; 2021 Sep; 12(37):12485-12493. PubMed ID: 34603680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi.
    Tomisić V; Blanc S; Elhabiri M; Expert D; Albrecht-Gary AM
    Inorg Chem; 2008 Oct; 47(20):9419-30. PubMed ID: 18803373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Siderophore-controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery.
    Expert D; Boughammoura A; Franza T
    J Biol Chem; 2008 Dec; 283(52):36564-72. PubMed ID: 18990691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of catechol siderophores by boronate affinity chromatography: identification of chrysobactin from Erwinia carotovora subsp. carotovora.
    Barnes HH; Ishimaru CA
    Biometals; 1999 Mar; 12(1):83-7. PubMed ID: 10420578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferric iron uptake in Erwinia chrysanthemi mediated by chrysobactin and related catechol-type compounds.
    Persmark M; Expert D; Neilands JB
    J Bacteriol; 1992 Jul; 174(14):4783-9. PubMed ID: 1624465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corynebactin and enterobactin: related siderophores of opposite chirality.
    Bluhm ME; Kim SS; Dertz EA; Raymond KN
    J Am Chem Soc; 2002 Mar; 124(11):2436-7. PubMed ID: 11890782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corynebactin and a serine trilactone based analogue: chirality and molecular modeling of ferric complexes.
    Bluhm ME; Hay BP; Kim SS; Dertz EA; Raymond KN
    Inorg Chem; 2002 Oct; 41(21):5475-8. PubMed ID: 12377042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection.
    Franza T; Mahé B; Expert D
    Mol Microbiol; 2005 Jan; 55(1):261-75. PubMed ID: 15612933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status.
    Dellagi A; Segond D; Rigault M; Fagard M; Simon C; Saindrenan P; Expert D
    Plant Physiol; 2009 Aug; 150(4):1687-96. PubMed ID: 19448037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of two siderophore-dependent iron-acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrisiderophore permease of the ABC transporter family.
    Mahé B; Masclaux C; Rauscher L; Enard C; Expert D
    Mol Microbiol; 1995 Oct; 18(1):33-43. PubMed ID: 8596459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a tonB mutation in Erwinia chrysanthemi 3937: TonB(Ech) is a member of the enterobacterial TonB family.
    Enard C; Expert D
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2051-2058. PubMed ID: 10931909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum.
    Dertz EA; Stintzi A; Raymond KN
    J Biol Inorg Chem; 2006 Nov; 11(8):1087-97. PubMed ID: 16912897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection.
    Dellagi A; Rigault M; Segond D; Roux C; Kraepiel Y; Cellier F; Briat JF; Gaymard F; Expert D
    Plant J; 2005 Jul; 43(2):262-72. PubMed ID: 15998312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erwinia chrysanthemi iron metabolism: the unexpected implication of the inner membrane platform within the type II secretion system.
    Douet V; Expert D; Barras F; Py B
    J Bacteriol; 2009 Feb; 191(3):795-804. PubMed ID: 18978048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ironing out a new siderophore synthesis strategy.
    Gulick AM
    Nat Chem Biol; 2009 Mar; 5(3):143-4. PubMed ID: 19219015
    [No Abstract]   [Full Text] [Related]  

  • 20. Streptobactin, a tricatechol-type siderophore from marine-derived Streptomyces sp. YM5-799.
    Matsuo Y; Kanoh K; Jang JH; Adachi K; Matsuda S; Miki O; Kato T; Shizuri Y
    J Nat Prod; 2011 Nov; 74(11):2371-6. PubMed ID: 22014204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.