These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21545420)

  • 1. Locally asymmetric introgressions between subspecies suggest circular range expansion at the Antirrhinum majus global scale.
    Khimoun A; Burrus M; Andalo C; Liu ZL; Vicédo-Cazettes C; Thébaud C; Pujol B
    J Evol Biol; 2011 Jul; 24(7):1433-41. PubMed ID: 21545420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary paths underlying flower color variation in Antirrhinum.
    Whibley AC; Langlade NB; Andalo C; Hanna AI; Bangham A; Thébaud C; Coen E
    Science; 2006 Aug; 313(5789):963-6. PubMed ID: 16917061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes.
    Preston JC; Hileman LC
    Plant J; 2010 May; 62(4):704-12. PubMed ID: 20202170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity.
    Cartolano M; Castillo R; Efremova N; Kuckenberg M; Zethof J; Gerats T; Schwarz-Sommer Z; Vandenbussche M
    Nat Genet; 2007 Jul; 39(7):901-5. PubMed ID: 17589508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of regulatory interactions controlling floral asymmetry.
    Costa MM; Fox S; Hanna AI; Baxter C; Coen E
    Development; 2005 Nov; 132(22):5093-101. PubMed ID: 16236768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome structure and evolution of Antirrhinum majus L.
    Li M; Zhang D; Gao Q; Luo Y; Zhang H; Ma B; Chen C; Whibley A; Zhang Y; Cao Y; Li Q; Guo H; Li J; Song Y; Zhang Y; Copsey L; Li Y; Li X; Qi M; Wang J; Chen Y; Wang D; Zhao J; Liu G; Wu B; Yu L; Xu C; Li J; Zhao S; Zhang Y; Hu S; Liang C; Yin Y; Coen E; Xue Y
    Nat Plants; 2019 Feb; 5(2):174-183. PubMed ID: 30692677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROSINA (RSI), a novel protein with DNA-binding capacity, acts during floral organ development in Antirrhinum majus.
    Roccaro M; Li Y; Masiero S; Saedler H; Sommer H
    Plant J; 2005 Jul; 43(2):238-50. PubMed ID: 15998310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolutionary history of Antirrhinum in the Pyrenees inferred from phylogeographic analyses.
    Liberal IM; Burrus M; Suchet C; Thébaud C; Vargas P
    BMC Evol Biol; 2014 Jun; 14():146. PubMed ID: 24970688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae).
    Hileman LC; Baum DA
    Mol Biol Evol; 2003 Apr; 20(4):591-600. PubMed ID: 12679544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution in action: following function in duplicated floral homeotic genes.
    Causier B; Castillo R; Zhou J; Ingram R; Xue Y; Schwarz-Sommer Z; Davies B
    Curr Biol; 2005 Aug; 15(16):1508-12. PubMed ID: 16111944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives.
    Gubitz T; Caldwell A; Hudson A
    Mol Biol Evol; 2003 Sep; 20(9):1537-44. PubMed ID: 12832647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for cytoplasmic inheritance of a developmental organizer affecting growth habit and leaf shape in Antirrhinum majus.
    Bergbusch VL
    Heredity (Edinb); 2002 Jul; 89(1):44-55. PubMed ID: 12080369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development.
    Navarro C; Efremova N; Golz JF; Rubiera R; Kuckenberg M; Castillo R; Tietz O; Saedler H; Schwarz-Sommer Z
    Development; 2004 Aug; 131(15):3649-59. PubMed ID: 15229173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced introgression of the Y chromosome between subspecies of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula.
    Geraldes A; Carneiro M; Delibes-Mateos M; Villafuerte R; Nachman MW; Ferrand N
    Mol Ecol; 2008 Oct; 17(20):4489-99. PubMed ID: 18986495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential adaptive divergence between subspecies and populations of snapdragon plants inferred from Q
    Marin S; Gibert A; Archambeau J; Bonhomme V; Lascoste M; Pujol B
    Mol Ecol; 2020 Aug; 29(16):3010-3021. PubMed ID: 32652730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum.
    Crawford BC; Nath U; Carpenter R; Coen ES
    Plant Physiol; 2004 May; 135(1):244-53. PubMed ID: 15122032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and functional analysis of
    Li FF; Hao YM; Cui ML; Piao CL
    Yi Chuan; 2023 Jun; 45(6):526-535. PubMed ID: 37340966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of flower color pattern through selection on regulatory small RNAs.
    Bradley D; Xu P; Mohorianu II; Whibley A; Field D; Tavares H; Couchman M; Copsey L; Carpenter R; Li M; Li Q; Xue Y; Dalmay T; Coen E
    Science; 2017 Nov; 358(6365):925-928. PubMed ID: 29146812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution. Traversing the adaptive landscape in snapdragons.
    Kramer EM; Donohue K
    Science; 2006 Aug; 313(5789):924-5. PubMed ID: 16917048
    [No Abstract]   [Full Text] [Related]  

  • 20. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Kim S; Koh J; Yoo MJ; Kong H; Hu Y; Ma H; Soltis PS; Soltis DE
    Plant J; 2005 Sep; 43(5):724-44. PubMed ID: 16115069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.