These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 21545630)

  • 1. Renal tubulointerstitial hypoxia: cause and consequence of kidney dysfunction.
    Palm F; Nordquist L
    Clin Exp Pharmacol Physiol; 2011 Jul; 38(7):474-80. PubMed ID: 21545630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.
    Nangaku M
    J Am Soc Nephrol; 2006 Jan; 17(1):17-25. PubMed ID: 16291837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal oxidative stress, oxygenation, and hypertension.
    Palm F; Nordquist L
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1229-41. PubMed ID: 21832206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress.
    Friederich-Persson M; Thörn E; Hansell P; Nangaku M; Levin M; Palm F
    Hypertension; 2013 Nov; 62(5):914-9. PubMed ID: 24019401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrarenal oxygenation in chronic renal failure.
    Norman JT; Fine LG
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):989-96. PubMed ID: 17002678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis.
    Evans RG; Gardiner BS; Smith DW; O'Connor PM
    Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1259-70. PubMed ID: 18550645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.
    Nangaku M
    Nephron Exp Nephrol; 2004; 98(1):e8-12. PubMed ID: 15361693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia-inducible factor signaling in the development of tissue fibrosis.
    Higgins DF; Kimura K; Iwano M; Haase VH
    Cell Cycle; 2008 May; 7(9):1128-32. PubMed ID: 18418042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased kidney metabolism as a pathway to kidney tissue hypoxia and damage: effects of triiodothyronine and dinitrophenol in normoglycemic rats.
    Friederich-Persson M; Persson P; Fasching A; Hansell P; Nordquist L; Palm F
    Adv Exp Med Biol; 2013; 789():9-14. PubMed ID: 23852470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease.
    Thomas JL; Pham H; Li Y; Hall E; Perkins GA; Ali SS; Patel HH; Singh P
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F282-F290. PubMed ID: 28331062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thyroid hormone increases oxygen metabolism causing intrarenal tissue hypoxia; a pathway to kidney disease.
    Sivertsson E; Friederich-Persson M; Persson P; Nangaku M; Hansell P; Palm F
    PLoS One; 2022; 17(3):e0264524. PubMed ID: 35239685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin-induced hypoxia in the kidney: functional and structural changes of the renal circulation.
    Nangaku M; Inagi R; Miyata T; Fujita T
    Adv Exp Med Biol; 2007; 618():85-99. PubMed ID: 18269190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated aerobic glycolysis in renal tubular epithelial cells influences the proliferation and differentiation of podocytes and promotes renal interstitial fibrosis.
    Li M; Jia F; Zhou H; Di J; Yang M
    Eur Rev Med Pharmacol Sci; 2018 Aug; 22(16):5082-5090. PubMed ID: 30178826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of tubulointerstitial inflammation in the progression of chronic renal failure.
    Rodríguez-Iturbe B; García García G
    Nephron Clin Pract; 2010; 116(2):c81-8. PubMed ID: 20502043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure.
    Nangaku M
    Intern Med; 2004 Jan; 43(1):9-17. PubMed ID: 14964574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenesis of tubular interstitial nephritis.
    Tanaka T; Nangaku M
    Contrib Nephrol; 2011; 169():297-310. PubMed ID: 21252528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis.
    Matsumoto M; Tanaka T; Yamamoto T; Noiri E; Miyata T; Inagi R; Fujita T; Nangaku M
    J Am Soc Nephrol; 2004 Jun; 15(6):1574-81. PubMed ID: 15153568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous relaxin is a naturally occurring modulator of experimental renal tubulointerstitial fibrosis.
    Hewitson TD; Mookerjee I; Masterson R; Zhao C; Tregear GW; Becker GJ; Samuel CS
    Endocrinology; 2007 Feb; 148(2):660-9. PubMed ID: 17095590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tubulointerstitial injury and the progression of chronic kidney disease.
    Hodgkins KS; Schnaper HW
    Pediatr Nephrol; 2012 Jun; 27(6):901-9. PubMed ID: 21947270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tenascin is an ubiquitous extracellular matrix protein of human renal interstitium in normal and pathologic conditions.
    Truong LD; Foster SV; Barrios R; D'Agati V; Verani RR; Gonzalez JM; Suki WN
    Nephron; 1996; 72(4):579-86. PubMed ID: 8730425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.