These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 21545720)

  • 1. Inference of gene regulatory networks from time series by Tsallis entropy.
    Lopes FM; de Oliveira EA; Cesar RM
    BMC Syst Biol; 2011 May; 5():61. PubMed ID: 21545720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropic Biological Score: a cell cycle investigation for GRNs inference.
    Lopes FM; Ray SS; Hashimoto RF; Cesar RM
    Gene; 2014 May; 541(2):129-37. PubMed ID: 24631265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Effectiveness of Causality Inference Methods for Gene Regulatory Networks.
    Ahmed SS; Roy S; Kalita J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):56-70. PubMed ID: 29994618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAILoR: Structure-Aware Inference of Logic Rules.
    Pušnik Ž; Mraz M; Zimic N; Moškon M
    PLoS One; 2024; 19(6):e0304102. PubMed ID: 38861487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of Gene Regulatory Network Based on Local Bayesian Networks.
    Liu F; Zhang SW; Guo WF; Wei ZG; Chen L
    PLoS Comput Biol; 2016 Aug; 12(8):e1005024. PubMed ID: 27479082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating network inference methods in terms of their ability to preserve the topology and complexity of genetic networks.
    Kiani NA; Zenil H; Olczak J; Tegnér J
    Semin Cell Dev Biol; 2016 Mar; 51():44-52. PubMed ID: 26851626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filter feature selection based Boolean Modelling for Genetic Network Inference.
    Gamage HN; Chetty M; Shatte A; Hallinan J
    Biosystems; 2022 Nov; 221():104757. PubMed ID: 36007675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks.
    Liang J; Han J
    BMC Syst Biol; 2012 Aug; 6():113. PubMed ID: 22929591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iLSGRN: inference of large-scale gene regulatory networks based on multi-model fusion.
    Wu Y; Qian B; Wang A; Dong H; Zhu E; Ma B
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37851379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of artificial time series microarray data for dynamic gene regulatory network inference.
    Xenitidis P; Seimenis I; Kakolyris S; Adamopoulos A
    J Theor Biol; 2017 Aug; 426():1-16. PubMed ID: 28528256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neuro-evolution approach to infer a Boolean network from time-series gene expressions.
    Barman S; Kwon YK
    Bioinformatics; 2020 Dec; 36(Suppl_2):i762-i769. PubMed ID: 33381823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data.
    Li L; Sun L; Chen G; Wong CW; Ching WK; Liu ZP
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37079737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TopoDoE: a design of experiment strategy for selection and refinement in ensembles of executable gene regulatory networks.
    Bouvier M; Zreika S; Vallin E; Fourneaux C; Gonin-Giraud S; Bonnaffoux A; Gandrillon O
    BMC Bioinformatics; 2024 Jul; 25(1):245. PubMed ID: 39030497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function approximation approach to the inference of reduced NGnet models of genetic networks.
    Kimura S; Sonoda K; Yamane S; Maeda H; Matsumura K; Hatakeyama M
    BMC Bioinformatics; 2008 Jan; 9():23. PubMed ID: 18194576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.