These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Investigation of the relationship of nonlinear backscattered ultrasound intensity with microbubble concentration at low MI. Lampaskis M; Averkiou M Ultrasound Med Biol; 2010 Feb; 36(2):306-12. PubMed ID: 20045592 [TBL] [Abstract][Full Text] [Related]
3. Spatial distribution of ultrasound targeted microbubble destruction increases cardiac transgene expression but not capillary permeability. Geis NA; Mayer CR; Kroll RD; Hardt SE; Katus HA; Bekeredjian R Ultrasound Med Biol; 2009 Jul; 35(7):1119-26. PubMed ID: 19427103 [TBL] [Abstract][Full Text] [Related]
4. In vitro evaluation of the impact of ultrasound scanner settings and contrast bolus volume on time-intensity curves. Gauthier TP; Chebil M; Peronneau P; Lassau N Ultrasonics; 2012 Jan; 52(1):12-9. PubMed ID: 21722933 [TBL] [Abstract][Full Text] [Related]
5. Thermal response of contrast agent microbubbles: preliminary results from physico-chemical and US-imaging characterization. Guiot C; Pastore G; Napoleone M; Gabriele P; Trotta M; Cavalli R Ultrasonics; 2006 Dec; 44 Suppl 1():e127-30. PubMed ID: 17056082 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region. Xu S; Hu H; Jiang H; Xu Z; Wan M J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483 [TBL] [Abstract][Full Text] [Related]
7. Investigation into the impact of diagnostic ultrasound with microbubbles on the capillary permeability of rat hepatomas. Wang G; Zhuo Z; Xia H; Zhang Y; He Y; Tan W; Gao Y Ultrasound Med Biol; 2013 Apr; 39(4):628-37. PubMed ID: 23415284 [TBL] [Abstract][Full Text] [Related]
8. Microbubble-induced sonoporation involved in ultrasound-mediated DNA transfection in vitro at low acoustic pressures. Qiu Y; Zhang C; Tu J; Zhang D J Biomech; 2012 May; 45(8):1339-45. PubMed ID: 22498312 [TBL] [Abstract][Full Text] [Related]
9. Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent. Casciaro S; Palmizio Errico R; Conversano F; Demitri C; Distante A Invest Radiol; 2007 Feb; 42(2):95-104. PubMed ID: 17220727 [TBL] [Abstract][Full Text] [Related]
10. Partial restoration of left ventricular systolic function by asPLB gene transfer using ultrasound-mediated microbubble destruction. Mou Y; Ye Y; Zhao XY; Yao L; Yan LP; Sun J; Zhu ZH; Hu SJ Ultrasound Med Biol; 2009 Oct; 35(10):1638-46. PubMed ID: 19616364 [TBL] [Abstract][Full Text] [Related]
11. Targeted gene delivery to the synovial pannus in antigen-induced arthritis by ultrasound-targeted microbubble destruction in vivo. Xiang X; Tang Y; Leng Q; Zhang L; Qiu L Ultrasonics; 2016 Feb; 65():304-14. PubMed ID: 26433434 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of focused ultrasound with microbubbles on the treatments of anticancer nanodrug in mouse tumors. Lin CY; Li JR; Tseng HC; Wu MF; Lin WL Nanomedicine; 2012 Aug; 8(6):900-7. PubMed ID: 22033084 [TBL] [Abstract][Full Text] [Related]
13. Influence of ultrasound induced cavitation on magnetic resonance imaging contrast in the rat liver in the presence of macromolecular contrast agent. Frulio N; Trillaud H; Deckers R; Lepreux S; Moonen C; Quesson B Invest Radiol; 2010 May; 45(5):282-7. PubMed ID: 20375844 [TBL] [Abstract][Full Text] [Related]
14. Quantitative and qualitative investigation into the impact of focused ultrasound with microbubbles on the triggered release of nanoparticles from vasculature in mouse tumors. Lin CY; Liu TM; Chen CY; Huang YL; Huang WK; Sun CK; Chang FH; Lin WL J Control Release; 2010 Sep; 146(3):291-8. PubMed ID: 20621645 [TBL] [Abstract][Full Text] [Related]
15. A novel ultrasound microbubble carrying gene and Tat peptide: preparation and characterization. Ren J; Xu C; Zhou Z; Zhang Y; Li X; Zheng Y; Ran H; Wang Z Acad Radiol; 2009 Dec; 16(12):1457-65. PubMed ID: 19781962 [TBL] [Abstract][Full Text] [Related]
16. High-speed optical observations and simulation results of SonoVue microbubbles at low-pressure insonation. Chetty K; Stride E; Sennoga CA; Hajnal JV; Eckersley RJ IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1333-42. PubMed ID: 18599421 [TBL] [Abstract][Full Text] [Related]
17. Ultrasound-mediated microbubble destruction enhances gene transfection in pancreatic cancer cells. Wang JF; Wang JB; Chen H; Zhang CM; Liu L; Pan SH; Wu CJ Adv Ther; 2008 May; 25(5):412-21. PubMed ID: 18463802 [TBL] [Abstract][Full Text] [Related]
18. Ultrasound-targeted microbubble destruction augments protein delivery into testes. Bekeredjian R; Kuecherer HF; Kroll RD; Katus HA; Hardt SE Urology; 2007 Feb; 69(2):386-9. PubMed ID: 17320694 [TBL] [Abstract][Full Text] [Related]
19. Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Xie F; Boska MD; Lof J; Uberti MG; Tsutsui JM; Porter TR Ultrasound Med Biol; 2008 Dec; 34(12):2028-34. PubMed ID: 18692294 [TBL] [Abstract][Full Text] [Related]
20. Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. Alter J; Sennoga CA; Lopes DM; Eckersley RJ; Wells DJ Ultrasound Med Biol; 2009 Jun; 35(6):976-84. PubMed ID: 19285783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]