These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21546240)

  • 1. Engineering porous scaffolds using gas-based techniques.
    Dehghani F; Annabi N
    Curr Opin Biotechnol; 2011 Oct; 22(5):661-6. PubMed ID: 21546240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.
    Murphy WL; Dennis RG; Kileny JL; Mooney DJ
    Tissue Eng; 2002 Feb; 8(1):43-52. PubMed ID: 11886653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.
    Flaibani M; Elvassore N
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.
    Johnson T; Bahrampourian R; Patel A; Mequanint K
    Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering.
    Zhang Q; Luo H; Zhang Y; Zhou Y; Ye Z; Tan W; Lang M
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2094-103. PubMed ID: 23498237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of porous chitosan-polyvinyl pyrrolidone scaffolds from a quaternary system via phase separation.
    Lim JI; Im H; Lee WK
    J Biomater Sci Polym Ed; 2015; 26(1):32-41. PubMed ID: 25410721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration.
    Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A
    Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of scaffold pore size in cartilage tissue engineering.
    Nava MM; Draghi L; Giordano C; Pietrabissa R
    J Appl Biomater Funct Mater; 2016 Jul; 14(3):e223-9. PubMed ID: 27444061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review: fabrication of porous polyurethane scaffolds.
    Janik H; Marzec M
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():586-91. PubMed ID: 25579961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the pore size of electrospun scaffolds.
    Rnjak-Kovacina J; Weiss AS
    Tissue Eng Part B Rev; 2011 Oct; 17(5):365-72. PubMed ID: 21815802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer.
    Dorati R; Colonna C; Tomasi C; Genta I; Bruni G; Conti B
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():130-9. PubMed ID: 24268242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering.
    Jiang X; Yu F; Wang Z; Li J; Tan H; Ding M; Fu Q
    J Biomater Sci Polym Ed; 2010; 21(12):1637-52. PubMed ID: 20537246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomed Mater Res A; 2014 Oct; 102(10):3379-92. PubMed ID: 24132871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering].
    Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering.
    Guarino V; Ambrosio L
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1389-400. PubMed ID: 21287827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.
    Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.