These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 21546433)
1. Acquisition of physical dormancy and ontogeny of the micropyle--water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae). Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2011 Jul; 108(1):51-64. PubMed ID: 21546433 [TBL] [Abstract][Full Text] [Related]
2. Identification and characterization of the water gap in physically dormant seeds of Geraniaceae, with special reference to Geranium carolinianum. Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2010 Jun; 105(6):977-90. PubMed ID: 20400757 [TBL] [Abstract][Full Text] [Related]
3. Quantitative analysis of the thermal requirements for stepwise physical dormancy-break in seeds of the winter annual Geranium carolinianum (Geraniaceae). Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2013 May; 111(5):849-58. PubMed ID: 23456728 [TBL] [Abstract][Full Text] [Related]
4. The autumn effect: timing of physical dormancy break in seeds of two winter annual species of Geraniaceae by a stepwise process. Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2012 Aug; 110(3):637-51. PubMed ID: 22684684 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2013 Jul; 112(1):69-84. PubMed ID: 23649182 [TBL] [Abstract][Full Text] [Related]
6. Seed development in Ipomoea lacunosa (Convolvulaceae), with particular reference to anatomy of the water gap. Gehan Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2007 Sep; 100(3):459-70. PubMed ID: 17650511 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of the water gap in the physically dormant seeds of Dodonaea petiolaris: a first report for Sapindaceae. Turner SR; Cook A; Baskin JM; Baskin CC; Tuckett RE; Steadman KJ; Dixon KW Ann Bot; 2009 Oct; 104(5):833-44. PubMed ID: 19620135 [TBL] [Abstract][Full Text] [Related]
8. Phylogeny of seed dormancy in Convolvulaceae, subfamily Convolvuloideae (Solanales). Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2009 Jan; 103(1):45-63. PubMed ID: 19074450 [TBL] [Abstract][Full Text] [Related]
9. Paths of water entry and structures involved in the breaking of seed dormancy of Lupinus. Robles-Díaz E; Flores J; Yáñez-Espinosa L J Plant Physiol; 2016 Mar; 192():75-80. PubMed ID: 26874334 [TBL] [Abstract][Full Text] [Related]
10. A function for the pleurogram in physically dormant seeds. Rodrigues-Junior AG; Mello ACMP; Baskin CC; Baskin JM; Oliveira DMT; Garcia QS Ann Bot; 2019 May; 123(5):867-876. PubMed ID: 30596817 [TBL] [Abstract][Full Text] [Related]
11. Physical dormancy in seeds of the holoparasitic angiosperm Cuscuta australis (Convolvulaceae, Cuscuteae): dormancy-breaking requirements, anatomy of the water gap and sensitivity cycling. Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC; Chien CT Ann Bot; 2008 Jul; 102(1):39-48. PubMed ID: 18453546 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms underpinning the onset of seed coat impermeability and dormancy-break in Astragalus adsurgens. Jaganathan GK; Li J; Biddick M; Han K; Song D; Yang Y; Han Y; Liu B Sci Rep; 2019 Jul; 9(1):9695. PubMed ID: 31273277 [TBL] [Abstract][Full Text] [Related]
13. Decoding the decisive role of seed moisture content in physical dormancy break: filling the missing links. Jaganathan GK; Harrison RJ Plant Biol (Stuttg); 2024 Jan; 26(1):3-10. PubMed ID: 38031719 [TBL] [Abstract][Full Text] [Related]
14. Dormancy-breaking requirements of Sophora tomentosa and Erythrina speciosa (Fabaceae) seeds. Luzia Delgado CM; Souza de Paula A; Santos M; Silveira Paulilo MT Rev Biol Trop; 2015 Mar; 63(1):285-94. PubMed ID: 26299132 [TBL] [Abstract][Full Text] [Related]
15. Seed anatomy and water uptake in relation to seed dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae). Orozco-Segovia A; Márquez-Guzmán J; Sánchez-Coronado ME; Gamboa de Buen A; Baskin JM; Baskin CC Ann Bot; 2007 Apr; 99(4):581-92. PubMed ID: 17298989 [TBL] [Abstract][Full Text] [Related]
16. Why large seeds with physical dormancy become nondormant earlier than small ones. Rodrigues-Junior AG; Mello ACMP; Baskin CC; Baskin JM; Oliveira DMT; Garcia QS PLoS One; 2018; 13(8):e0202038. PubMed ID: 30092026 [TBL] [Abstract][Full Text] [Related]
17. Some eco-physiological aspects of seed dormancy in Geranium carolinianum L. from central tennessee. Baskin JM; Baskin CC Oecologia; 1974 Sep; 16(3):209-219. PubMed ID: 28308608 [TBL] [Abstract][Full Text] [Related]
18. What kind of seed dormancy occurs in the legume genus Cassia? Rodrigues-Junior AG; Santos MTA; Hass J; Paschoal BSM; De-Paula OC Sci Rep; 2020 Jul; 10(1):12194. PubMed ID: 32699334 [TBL] [Abstract][Full Text] [Related]
19. Seed dormancy and germination. Penfield S Curr Biol; 2017 Sep; 27(17):R874-R878. PubMed ID: 28898656 [TBL] [Abstract][Full Text] [Related]
20. Investigating seed dormancy in cotton (Gossypium hirsutum L.): understanding the physiological changes in embryo during after-ripening and germination. Wang LR; Yang XN; Gao YS; Zhang XY; Hu W; Zhou Z; Meng YL Plant Biol (Stuttg); 2019 Sep; 21(5):911-919. PubMed ID: 31077623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]