These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 21546543)
1. Trex2 enables spontaneous sister chromatid exchanges without facilitating DNA double-strand break repair. Dumitrache LC; Hu L; Son MY; Li H; Wesevich A; Scully R; Stark J; Hasty P Genetics; 2011 Aug; 188(4):787-97. PubMed ID: 21546543 [TBL] [Abstract][Full Text] [Related]
2. TREX2 exonuclease defective cells exhibit double-strand breaks and chromosomal fragments but not Robertsonian translocations. Dumitrache LC; Hu L; Hasty P Mutat Res; 2009 Mar; 662(1-2):84-7. PubMed ID: 19094998 [TBL] [Abstract][Full Text] [Related]
3. Limiting the persistence of a chromosome break diminishes its mutagenic potential. Bennardo N; Gunn A; Cheng A; Hasty P; Stark JM PLoS Genet; 2009 Oct; 5(10):e1000683. PubMed ID: 19834534 [TBL] [Abstract][Full Text] [Related]
4. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Hu L; Kim TM; Son MY; Kim SA; Holland CL; Tateishi S; Kim DH; Yew PR; Montagna C; Dumitrache LC; Hasty P Nature; 2013 Sep; 501(7468):569-72. PubMed ID: 24013173 [TBL] [Abstract][Full Text] [Related]
5. I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Gunn A; Stark JM Methods Mol Biol; 2012; 920():379-91. PubMed ID: 22941618 [TBL] [Abstract][Full Text] [Related]
6. TREX2 Exonuclease Causes Spontaneous Mutations and Stress-Induced Replication Fork Defects in Cells Expressing RAD51 Ko JH; Son MY; Zhou Q; Molnarova L; Song L; Mlcouskova J; Jekabsons A; Montagna C; Krejci L; Hasty P Cell Rep; 2020 Dec; 33(12):108543. PubMed ID: 33357432 [TBL] [Abstract][Full Text] [Related]
7. Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination. Muñoz-Galván S; López-Saavedra A; Jackson SP; Huertas P; Cortés-Ledesma F; Aguilera A Nucleic Acids Res; 2013 Feb; 41(3):1669-83. PubMed ID: 23254329 [TBL] [Abstract][Full Text] [Related]
8. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. Stephanou NC; Gao F; Bongiorno P; Ehrt S; Schnappinger D; Shuman S; Glickman MS J Bacteriol; 2007 Jul; 189(14):5237-46. PubMed ID: 17496093 [TBL] [Abstract][Full Text] [Related]
9. The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Costelloe T; Louge R; Tomimatsu N; Mukherjee B; Martini E; Khadaroo B; Dubois K; Wiegant WW; Thierry A; Burma S; van Attikum H; Llorente B Nature; 2012 Sep; 489(7417):581-4. PubMed ID: 22960744 [TBL] [Abstract][Full Text] [Related]
10. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes. Dong Z; Fasullo M Nucleic Acids Res; 2003 May; 31(10):2576-85. PubMed ID: 12736307 [TBL] [Abstract][Full Text] [Related]
11. The non-homologous end-joining factor Nej1 inhibits resection mediated by Dna2-Sgs1 nuclease-helicase at DNA double strand breaks. Sorenson KS; Mahaney BL; Lees-Miller SP; Cobb JA J Biol Chem; 2017 Sep; 292(35):14576-14586. PubMed ID: 28679532 [TBL] [Abstract][Full Text] [Related]
12. Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. González-Barrera S; Cortés-Ledesma F; Wellinger RE; Aguilera A Mol Cell; 2003 Jun; 11(6):1661-71. PubMed ID: 12820977 [TBL] [Abstract][Full Text] [Related]
13. Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents. Fasullo M; Dong Z; Sun M; Zeng L DNA Repair (Amst); 2005 Nov; 4(11):1240-51. PubMed ID: 16039914 [TBL] [Abstract][Full Text] [Related]
14. Radiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks. Rothkamm K; Kühne M; Jeggo PA; Löbrich M Cancer Res; 2001 May; 61(10):3886-93. PubMed ID: 11358801 [TBL] [Abstract][Full Text] [Related]
15. Role of the Saccharomyces cerevisiae Rad51 paralogs in sister chromatid recombination. Mozlin AM; Fung CW; Symington LS Genetics; 2008 Jan; 178(1):113-26. PubMed ID: 18202362 [TBL] [Abstract][Full Text] [Related]
16. Effects of mutations in SGS1 and in genes functionally related to SGS1 on inverted repeat-stimulated spontaneous unequal sister-chromatid exchange in yeast. Nag DK; Cavallo SJ BMC Mol Biol; 2007 Dec; 8():120. PubMed ID: 18166135 [TBL] [Abstract][Full Text] [Related]
17. Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid. Muñoz-Galván S; Jimeno S; Rothstein R; Aguilera A PLoS Genet; 2013; 9(1):e1003237. PubMed ID: 23357952 [TBL] [Abstract][Full Text] [Related]
18. Bloom DNA helicase facilitates homologous recombination between diverged homologous sequences. Kikuchi K; Abdel-Aziz HI; Taniguchi Y; Yamazoe M; Takeda S; Hirota K J Biol Chem; 2009 Sep; 284(39):26360-7. PubMed ID: 19661064 [TBL] [Abstract][Full Text] [Related]
19. Alternative end-joining and classical nonhomologous end-joining pathways repair different types of double-strand breaks during class-switch recombination. Cortizas EM; Zahn A; Hajjar ME; Patenaude AM; Di Noia JM; Verdun RE J Immunol; 2013 Dec; 191(11):5751-63. PubMed ID: 24146042 [TBL] [Abstract][Full Text] [Related]
20. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Pierce AJ; Hu P; Han M; Ellis N; Jasin M Genes Dev; 2001 Dec; 15(24):3237-42. PubMed ID: 11751629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]