These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21546658)

  • 1. Infrared monitoring of dinitrotoluenes in sunflower and maize roots.
    Dokken KM; Davis LC
    J Environ Qual; 2011; 40(3):719-30. PubMed ID: 21546658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared imaging of sunflower and maize root anatomy.
    Dokken KM; Davis LC
    J Agric Food Chem; 2007 Dec; 55(26):10517-30. PubMed ID: 18047282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.).
    Wang Z; Xie X; Zhao J; Liu X; Feng W; White JC; Xing B
    Environ Sci Technol; 2012 Apr; 46(8):4434-41. PubMed ID: 22435775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions.
    Bi X; Feng X; Yang Y; Li X; Shin GP; Li F; Qiu G; Li G; Liu T; Fu Z
    Environ Pollut; 2009 Mar; 157(3):834-9. PubMed ID: 19100668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sunflower seedlings hyperaccumulate Selenium.
    Garousi F; Kovács B; Veres S
    Acta Biol Hung; 2018 Jun; 69(2):197-209. PubMed ID: 29888665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quinclorac-induced cell death is accompanied by generation of reactive oxygen species in maize root tissue.
    Sunohara Y; Matsumoto H
    Phytochemistry; 2008 Sep; 69(12):2312-9. PubMed ID: 18674787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolomic and proteomic changes in the xylem sap of maize under drought.
    Alvarez S; Marsh EL; Schroeder SG; Schachtman DP
    Plant Cell Environ; 2008 Mar; 31(3):325-40. PubMed ID: 18088330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Selenium Toxicity in Sunflower and Maize Seedlings Grown in Hydroponic Cultures.
    Garousi F; Veres S; Kovács B
    Bull Environ Contam Toxicol; 2016 Nov; 97(5):709-713. PubMed ID: 27613423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots.
    Ernst L; Goodger JQ; Alvarez S; Marsh EL; Berla B; Lockhart E; Jung J; Li P; Bohnert HJ; Schachtman DP
    J Exp Bot; 2010 Jul; 61(12):3395-405. PubMed ID: 20566566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for cyclic hydroxamates in aluminium resistance in maize?
    Poschenrieder C; Tolrà RP; Barceló J
    J Inorg Biochem; 2005 Sep; 99(9):1830-6. PubMed ID: 16054220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of multivariate curve resolution for analysis of FT-IR microspectroscopic images of in situ plant tissue.
    Budevska BO; Sum ST; Jones TJ
    Appl Spectrosc; 2003 Feb; 57(2):124-31. PubMed ID: 14610947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic biotransformation of dinitrotoluene isomers by Lactococcus lactis subsp. lactis strain 27 isolated from earthworm intestine.
    Shin KH; Lim Y; Ahn JH; Khil J; Cha CJ; Hur HG
    Chemosphere; 2005 Sep; 61(1):30-9. PubMed ID: 16157167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced metabolites of nitroaromatics are distributed in the environment via the food chain.
    Nisar N; Cheema KJ; Powell G; Bennett M; Chaudhary SU; Qadri R; Yang Y; Azam M; Rossiter JT
    J Hazard Mater; 2018 Aug; 355():170-179. PubMed ID: 29800911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [FTIR spectra-principal component analysis of roots of Polygonum cuspidatum from different areas].
    Zuo K; Li DT; Guo SL; Chen JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):1989-92. PubMed ID: 18306779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of hierarchical cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based Fourier transform infrared (FTIR) microspectroscopy.
    Yu P
    J Agric Food Chem; 2005 Sep; 53(18):7115-27. PubMed ID: 16131119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.).
    Liu DH; Jiang WS; Hou WQ
    J Environ Sci (China); 2001 Apr; 13(2):228-32. PubMed ID: 11590748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of root growth and polyamine metabolism in sunflower (Helianthus annuus) seedlings under cadmium and copper stress.
    Groppa MD; Zawoznik MS; Tomaro ML; Benavides MP
    Biol Trace Elem Res; 2008; 126(1-3):246-56. PubMed ID: 18679587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytotransformation of 2,4-dinitrotoluene in arabidopsis thaliana: toxicity, fate, and gene expression studies in vitro.
    Yoon JM; Oliver DJ; Shanks JV
    Biotechnol Prog; 2006; 22(6):1524-31. PubMed ID: 17137297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.
    Xu L; Niu J; Li C; Zhang F
    J Integr Plant Biol; 2009 Jul; 51(7):689-97. PubMed ID: 19566647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L. (sunflower).
    Mani D; Sharma B; Kumar C
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):71-9. PubMed ID: 17549427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.