These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 2154673)
1. Bone marrow stromal cell bioactivation and detoxification of the benzene metabolite hydroquinone: comparison of macrophages and fibroblastoid cells. Thomas DJ; Sadler A; Subrahmanyam VV; Siegel D; Reasor MJ; Wierda D; Ross D Mol Pharmacol; 1990 Feb; 37(2):255-62. PubMed ID: 2154673 [TBL] [Abstract][Full Text] [Related]
2. Cell-specific metabolism in mouse bone marrow stroma: studies of activation and detoxification of benzene metabolites. Ganousis LG; Goon D; Zyglewska T; Wu KK; Ross D Mol Pharmacol; 1992 Dec; 42(6):1118-25. PubMed ID: 1480134 [TBL] [Abstract][Full Text] [Related]
3. Activation and deactivation of quinones catalyzed by DT-diaphorase. Evidence for bioreductive activation of diaziquone (AZQ) in human tumor cells and detoxification of benzene metabolites in bone marrow stroma. Ross D; Siegel D; Gibson NW; Pacheco D; Thomas DJ; Reasor M; Wierda D Free Radic Res Commun; 1990; 8(4-6):373-81. PubMed ID: 2113030 [TBL] [Abstract][Full Text] [Related]
4. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: identification of target cells and a potential role for modulation of apoptosis in benzene toxicity. Ross D; Siegel D; Schattenberg DG; Sun XM; Moran JL Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1177-82. PubMed ID: 9118890 [TBL] [Abstract][Full Text] [Related]
5. Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase. Schlosser MJ; Shurina RD; Kalf GF Environ Health Perspect; 1989 Jul; 82():229-37. PubMed ID: 2551664 [TBL] [Abstract][Full Text] [Related]
7. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene. Smart RC; Zannoni VG Mol Pharmacol; 1984 Jul; 26(1):105-11. PubMed ID: 6749127 [TBL] [Abstract][Full Text] [Related]
8. Differences in quinone reductase activity in primary bone marrow stromal cells derived from C57BL/6 and DBA/2 mice. Twerdok LE; Trush MA Res Commun Chem Pathol Pharmacol; 1990 Mar; 67(3):375-86. PubMed ID: 2343185 [TBL] [Abstract][Full Text] [Related]
9. Phenol-induced stimulation of hydroquinone bioactivation in mouse bone marrow in vivo: possible implications in benzene myelotoxicity. Subrahmanyam VV; Doane-Setzer P; Steinmetz KL; Ross D; Smith MT Toxicology; 1990 May; 62(1):107-16. PubMed ID: 2343455 [TBL] [Abstract][Full Text] [Related]
10. Induction of quinone reductase and glutathione in bone marrow cells by 1,2-dithiole-3-thione: effect on hydroquinone-induced cytotoxicity. Twerdok LE; Rembish SJ; Trush MA Toxicol Appl Pharmacol; 1992 Feb; 112(2):273-81. PubMed ID: 1371615 [TBL] [Abstract][Full Text] [Related]
11. Stimulation of in vitro bioactivation of hydroquinone by phenol in bone marrow cells. Subrahmanyam V; Sadler A; Suba E; Ross D Drug Metab Dispos; 1989; 17(3):348-50. PubMed ID: 2568920 [No Abstract] [Full Text] [Related]
12. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure. Eastmond DA; Smith MT; Irons RD Toxicol Appl Pharmacol; 1987 Oct; 91(1):85-95. PubMed ID: 2823417 [TBL] [Abstract][Full Text] [Related]
13. Macrophage regulation of myelopoiesis is altered by exposure to the benzene metabolite hydroquinone. Thomas DJ; Reasor MJ; Wierda D Toxicol Appl Pharmacol; 1989 Mar; 97(3):440-53. PubMed ID: 2609342 [TBL] [Abstract][Full Text] [Related]
14. Differences in xenobiotic detoxifying activities between bone marrow stromal cells from mice and rats: implications for benzene-induced hematotoxicity. Zhu H; Li Y; Trush MA J Toxicol Environ Health; 1995 Oct; 46(2):183-201. PubMed ID: 7563217 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of diaziquone by NAD(P)H:(quinone acceptor) oxidoreductase (DT-diaphorase): role in diaziquone-induced DNA damage and cytotoxicity in human colon carcinoma cells. Siegel D; Gibson NW; Preusch PC; Ross D Cancer Res; 1990 Nov; 50(22):7293-300. PubMed ID: 2121335 [TBL] [Abstract][Full Text] [Related]
17. Covalent binding of benzene and its metabolites to DNA in rabbit bone marrow mitochondria in vitro. Rushmore T; Snyder R; Kalf G Chem Biol Interact; 1984 Apr; 49(1-2):133-54. PubMed ID: 6202430 [TBL] [Abstract][Full Text] [Related]
18. Bioactivation of catechol in rat and human bone marrow cells. Bhat RV; Subrahmanyam VV; Sadler A; Ross D Toxicol Appl Pharmacol; 1988 Jun; 94(2):297-304. PubMed ID: 3388426 [TBL] [Abstract][Full Text] [Related]
19. The inhibition of mitochondrial DNA replication in vitro by the metabolites of benzene, hydroquinone and p-benzoquinone. Schwartz CS; Snyder R; Kalf GF Chem Biol Interact; 1985 May; 53(3):327-50. PubMed ID: 4006011 [TBL] [Abstract][Full Text] [Related]
20. Studies on biochemical determinants of quinone-induced toxicity in primary murine bone marrow stromal cells. Twerdok LE; Trush MA Adv Exp Med Biol; 1991; 283():843-6. PubMed ID: 1906233 [No Abstract] [Full Text] [Related] [Next] [New Search]