BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21546897)

  • 1. Energy storage: batteries take charge.
    Stein A
    Nat Nanotechnol; 2011 May; 6(5):262-3. PubMed ID: 21546897
    [No Abstract]   [Full Text] [Related]  

  • 2. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes.
    Zhang H; Yu X; Braun PV
    Nat Nanotechnol; 2011 May; 6(5):277-81. PubMed ID: 21423184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries.
    Hu X; Han X; Hu Y; Cheng F; Chen J
    Nanoscale; 2014 Apr; 6(7):3522-5. PubMed ID: 24577589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium--air batteries.
    Truong TT; Liu Y; Ren Y; Trahey L; Sun Y
    ACS Nano; 2012 Sep; 6(9):8067-77. PubMed ID: 22866870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CoMn(2)O(4) spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries.
    Hu L; Zhong H; Zheng X; Huang Y; Zhang P; Chen Q
    Sci Rep; 2012; 2():986. PubMed ID: 23248749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peanut-like MnO@C core-shell composites as anode electrodes for high-performance lithium ion batteries.
    Wang S; Ren Y; Liu G; Xing Y; Zhang S
    Nanoscale; 2014 Apr; 6(7):3508-12. PubMed ID: 24567164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries.
    Lai H; Li J; Chen Z; Huang Z
    ACS Appl Mater Interfaces; 2012 May; 4(5):2325-8. PubMed ID: 22545767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries.
    Li L; Raji AR; Tour JM
    Adv Mater; 2013 Nov; 25(43):6298-302. PubMed ID: 23996876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional self-supported metal oxides for advanced energy storage.
    Ellis BL; Knauth P; Djenizian T
    Adv Mater; 2014 Jun; 26(21):3368-97. PubMed ID: 24700719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior lithium storage performance using sequentially stacked MnO2/reduced graphene oxide composite electrodes.
    Kim SJ; Yun YJ; Kim KW; Chae C; Jeong S; Kang Y; Choi SY; Lee SS; Choi S
    ChemSusChem; 2015 Apr; 8(8):1484-91. PubMed ID: 25845554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries.
    Kim Y
    ACS Appl Mater Interfaces; 2012 May; 4(5):2329-33. PubMed ID: 22497580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors.
    Rusi ; Majid SR
    PLoS One; 2016; 11(5):e0154566. PubMed ID: 27182595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage.
    Liu R; Lee SB
    J Am Chem Soc; 2008 Mar; 130(10):2942-3. PubMed ID: 18275200
    [No Abstract]   [Full Text] [Related]  

  • 14. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.
    Yuan L; Lu XH; Xiao X; Zhai T; Dai J; Zhang F; Hu B; Wang X; Gong L; Chen J; Hu C; Tong Y; Zhou J; Wang ZL
    ACS Nano; 2012 Jan; 6(1):656-61. PubMed ID: 22182051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Giant Seebeck coefficient thermoelectric device of MnO2 powder.
    Song F; Wu L; Liang S
    Nanotechnology; 2012 Mar; 23(8):085401. PubMed ID: 22293218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly stretchable alkaline batteries based on an embedded conductive fabric.
    Gaikwad AM; Zamarayeva AM; Rousseau J; Chu H; Derin I; Steingart DA
    Adv Mater; 2012 Sep; 24(37):5071-6. PubMed ID: 22760812
    [No Abstract]   [Full Text] [Related]  

  • 18. Establishment of pseudoternary LiO0.5-NiO-MnO2 phase diagram by combinatorial wet process.
    Fujimoto K; Shimura Y; Ito S
    ACS Comb Sci; 2013 Dec; 15(12):626-30. PubMed ID: 24171655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of Hybrid Supercapacitor-Batteries with dual-scale shelled architecture.
    Qian Z; Peng T; Wang J; Qu L
    ChemSusChem; 2014 Jul; 7(7):1881-7. PubMed ID: 24782290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage.
    Yang S; Gong Y; Liu Z; Zhan L; Hashim DP; Ma L; Vajtai R; Ajayan PM
    Nano Lett; 2013 Apr; 13(4):1596-601. PubMed ID: 23477543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.