BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21547031)

  • 1. Fetomaternal microchimerism: Some answers and many new questions.
    Tan KH; Zeng XX; Sasajala P; Yeo A; Udolph G
    Chimerism; 2011 Jan; 2(1):16-8. PubMed ID: 21547031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pregnancy-associated progenitor cells differentiate and mature into neurons in the maternal brain.
    Zeng XX; Tan KH; Yeo A; Sasajala P; Tan X; Xiao ZC; Dawe G; Udolph G
    Stem Cells Dev; 2010 Dec; 19(12):1819-30. PubMed ID: 20707697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fetomaternal microchimerism and genetic diagnosis: On the origins of fetal cells and cell-free fetal DNA in the pregnant woman.
    Rosner M; Kolbe T; Hengstschläger M
    Mutat Res Rev Mutat Res; 2021; 788():108399. PubMed ID: 34893150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The love-shaper: role of the foetus in modulating mother-child attachment through stem cell migration to the maternal brain.
    Tartagni MV; Graziottin A
    Eur J Contracept Reprod Health Care; 2023 Aug; 28(4):216-222. PubMed ID: 37293833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell migration from baby to mother.
    Dawe GS; Tan XW; Xiao ZC
    Cell Adh Migr; 2007; 1(1):19-27. PubMed ID: 19262088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fetomaternal cell traffic, pregnancy-associated progenitor cells, and autoimmune disease.
    Bianchi DW
    Best Pract Res Clin Obstet Gynaecol; 2004 Dec; 18(6):959-75. PubMed ID: 15582549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier?
    Tan XW; Liao H; Sun L; Okabe M; Xiao ZC; Dawe GS
    Stem Cells; 2005; 23(10):1443-52. PubMed ID: 16091558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pregnancy-associated progenitor cells: an under-recognized potential source of stem cells in maternal lung.
    Pritchard S; Hoffman AM; Johnson KL; Bianchi DW
    Placenta; 2011 Oct; 32 Suppl 4():S298-303. PubMed ID: 21546085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural progenitor cell transplants into the developing and mature central nervous system.
    Sakaguchi DS; Van Hoffelen SJ; Grozdanic SD; Kwon YH; Kardon RH; Young MJ
    Ann N Y Acad Sci; 2005 May; 1049():118-34. PubMed ID: 15965112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation and morphological integration of neural progenitor cells transplanted into the developing mammalian eye.
    Sakaguchi DS; Van Hoffelen SJ; Young MJ
    Ann N Y Acad Sci; 2003 May; 995():127-39. PubMed ID: 12814945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fetal-maternal exchange of multipotent stem/progenitor cells: microchimerism in diagnosis and disease.
    Klonisch T; Drouin R
    Trends Mol Med; 2009 Nov; 15(11):510-8. PubMed ID: 19828378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse.
    Khosrotehrani K; Bianchi DW
    J Cell Sci; 2005 Apr; 118(Pt 8):1559-63. PubMed ID: 15811948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma.
    Evans PC; Lambert N; Maloney S; Furst DE; Moore JM; Nelson JL
    Blood; 1999 Mar; 93(6):2033-7. PubMed ID: 10068676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term feto-maternal microchimerism: nature's hidden clue for alternative donor hematopoietic cell transplantation?
    Ichinohe T; Maruya E; Saji H
    Int J Hematol; 2002 Oct; 76(3):229-37. PubMed ID: 12416733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fetal cells in the mother: from genetic diagnosis to diseases associated with fetal cell microchimerism.
    Bianchi DW
    Eur J Obstet Gynecol Reprod Biol; 2000 Sep; 92(1):103-8. PubMed ID: 10986442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human term placental cells: phenotype, properties and new avenues in regenerative medicine.
    Caruso M; Evangelista M; Parolini O
    Int J Mol Cell Med; 2012; 1(2):64-74. PubMed ID: 24551761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microchimerism: tolerance vs. sensitization.
    Dutta P; Burlingham WJ
    Curr Opin Organ Transplant; 2011 Aug; 16(4):359-65. PubMed ID: 21666480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fetal endothelial and mesenchymal progenitors from the human term placenta: potency and clinical potential.
    Shafiee A; Fisk NM; Hutmacher DW; Khosrotehrani K; Patel J
    Stem Cells Transl Med; 2015 May; 4(5):419-23. PubMed ID: 25769652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ox-PAPCs in the differentiation of mesenchymal stem cells (MSCs) and Runx2 and PPARγ2 expression in MSCs-like of osteoporotic patients.
    Valenti MT; Garbin U; Pasini A; Zanatta M; Stranieri C; Manfro S; Zucal C; Dalle Carbonare L
    PLoS One; 2011; 6(6):e20363. PubMed ID: 21674037
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.