BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21547316)

  • 1. Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics.
    Anderson RR; Hu W; Noh JW; Dahlquist WC; Ness SJ; Gustafson TM; Richards DC; Kim S; Mazzeo BA; Woolley AT; Nordin GP
    Lab Chip; 2011 Jun; 11(12):2088-96. PubMed ID: 21547316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection.
    Densmore A; Vachon M; Xu DX; Janz S; Ma R; Li YH; Lopinski G; Delâge A; Lapointe J; Luebbert CC; Liu QY; Cheben P; Schmid JH
    Opt Lett; 2009 Dec; 34(23):3598-600. PubMed ID: 19953132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of Newtonian fluid pressure in microcantilever integrated flexible microfluidic channel for healthcare application.
    Saxena A; Kumar M; Mishra D; Singh K
    Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38452735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of non-specific adsorption using sheath flow.
    Munson MS; Hasenbank MS; Fu E; Yager P
    Lab Chip; 2004 Oct; 4(5):438-45. PubMed ID: 15472727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method.
    Hu W; Anderson R; Qian Y; Song J; Noh JW; Kim S; Nordin GP
    Rev Sci Instrum; 2009 Aug; 80(8):085101. PubMed ID: 19725675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open-access microfluidic patch-clamp array with raised lateral cell trapping sites.
    Lau AY; Hung PJ; Wu AR; Lee LP
    Lab Chip; 2006 Dec; 6(12):1510-5. PubMed ID: 17203154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-effect flow control in a polydimethylsiloxane-based microfluidic system.
    Buch JS; Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge.
    Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW
    Langmuir; 2011 Jan; 27(1):250-63. PubMed ID: 21128607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method of printing uniform protein lines by using flat PDMS stamps.
    Zhang W; Xue CY; Yang KL
    J Colloid Interface Sci; 2011 Jan; 353(1):143-8. PubMed ID: 20933241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications.
    Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD
    Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection.
    Li S; Floriano PN; Christodoulides N; Fozdar DY; Shao D; Ali MF; Dharshan P; Mohanty S; Neikirk D; McDevitt JT; Chen S
    Biosens Bioelectron; 2005 Oct; 21(4):574-80. PubMed ID: 16202870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption.
    Sibarani J; Takai M; Ishihara K
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):88-93. PubMed ID: 17112710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel.
    Kim KS; Park JK
    Lab Chip; 2005 Jun; 5(6):657-64. PubMed ID: 15915258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox actuation of a microcantilever driven by a self-assembled ferrocenylundecanethiolate monolayer: an investigation of the origin of the micromechanical motion and surface stress.
    Norman LL; Badia A
    J Am Chem Soc; 2009 Feb; 131(6):2328-37. PubMed ID: 19166296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing refractive index changes and differential bending in microcantilever arrays.
    Huber F; Lang HP; Hegner M; Despont M; Drechsler U; Gerber C
    Rev Sci Instrum; 2008 Aug; 79(8):086110. PubMed ID: 19044391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes.
    Novo P; Prazeres DM; Chu V; Conde JP
    Lab Chip; 2011 Dec; 11(23):4063-71. PubMed ID: 22012414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics.
    Rogers CI; Pagaduan JV; Nordin GP; Woolley AT
    Anal Chem; 2011 Aug; 83(16):6418-25. PubMed ID: 21728310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular interactions in self-assembly monolayers on gold-coated microcantilever electrodes.
    Pan H; Xu Y; Wu S; Zhang B; Tang J
    Nanotechnology; 2011 Jun; 22(22):225503. PubMed ID: 21454929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.