These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21547486)

  • 1. Best linear unbiased prediction and optimum allocation of test resources in maize breeding with doubled haploids.
    Mi X; Wegenast T; Utz HF; Dhillon BS; Melchinger AE
    Theor Appl Genet; 2011 Jun; 123(1):1-10. PubMed ID: 21547486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid maize breeding with doubled haploids. IV. Number versus size of crosses and importance of parental selection in two-stage selection for testcross performance.
    Wegenast T; Longin CF; Utz HF; Melchinger AE; Maurer HP; Reif JC
    Theor Appl Genet; 2008 Jul; 117(2):251-60. PubMed ID: 18438638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid maize breeding with doubled haploids: III. Efficiency of early testing prior to doubled haploid production in two-stage selection for testcross performance.
    Longin CF; Utz HF; Reif JC; Wegenast T; Schipprack W; Melchinger AE
    Theor Appl Genet; 2007 Aug; 115(4):519-27. PubMed ID: 17604975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid maize breeding with doubled haploids: V. Selection strategies for testcross performance with variable sizes of crosses and S(1) families.
    Wegenast T; Utz HF; Longin CF; Maurer HP; Dhillon BS; Melchinger AE
    Theor Appl Genet; 2010 Feb; 120(4):699-708. PubMed ID: 19865804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid maize breeding with doubled haploids: I. One-stage versus two-stage selection for testcross performance.
    Longin CF; Utz HF; Reif JC; Schipprack W; Melchinger AE
    Theor Appl Genet; 2006 Mar; 112(5):903-12. PubMed ID: 16435127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid maize breeding with doubled haploids: II. Optimum type and number of testers in two-stage selection for general combining ability.
    Longin CF; Utz HF; Melchinger AE; Reif JC
    Theor Appl Genet; 2007 Feb; 114(3):393-402. PubMed ID: 17180379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic prediction across years in a maize doubled haploid breeding program to accelerate early-stage testcross testing.
    Wang N; Wang H; Zhang A; Liu Y; Yu D; Hao Z; Ilut D; Glaubitz JC; Gao Y; Jones E; Olsen M; Li X; San Vicente F; Prasanna BM; Crossa J; Pérez-Rodríguez P; Zhang X
    Theor Appl Genet; 2020 Oct; 133(10):2869-2879. PubMed ID: 32607592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale.
    Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF
    Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doubled haploid versus S1 family recurrent selection for testcross performance in a maize population.
    Bordes J; Charmet G; de Vaulx RD; Pollacsek M; Beckert M; Gallais A
    Theor Appl Genet; 2006 Apr; 112(6):1063-72. PubMed ID: 16432736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in population parameters and best linear unbiased prediction of progeny performance in a European F(2) maize population under modified recurrent full-sib selection.
    Flachenecker C; Frisch M; Falke KC; Melchinger AE
    Theor Appl Genet; 2006 Feb; 112(3):483-91. PubMed ID: 16344984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment.
    Lorenz AJ
    G3 (Bethesda); 2013 Mar; 3(3):481-91. PubMed ID: 23450123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize.
    Böhm J; Schipprack W; Utz HF; Melchinger AE
    Theor Appl Genet; 2017 May; 130(5):861-873. PubMed ID: 28194473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.
    Olivoto T; Nardino M; Carvalho IR; Follmann DN; Ferrari M; Szareski VJ; de Pelegrin AJ; de Souza VQ
    Genet Mol Res; 2017 Mar; 16(1):. PubMed ID: 28340272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm.
    Brauner PC; Schipprack W; Utz HF; Bauer E; Mayer M; Schön CC; Melchinger AE
    Theor Appl Genet; 2019 Jun; 132(6):1897-1908. PubMed ID: 30877313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome optimization via virtual simulation to accelerate maize hybrid breeding.
    Cheng Q; Jiang S; Xu F; Wang Q; Xiao Y; Zhang R; Zhao J; Yan J; Ma C; Wang X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34676389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-based prediction of testcross values in maize.
    Albrecht T; Wimmer V; Auinger HJ; Erbe M; Knaak C; Ouzunova M; Simianer H; Schön CC
    Theor Appl Genet; 2011 Jul; 123(2):339-50. PubMed ID: 21505832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic predictability of interconnected biparental maize populations.
    Riedelsheimer C; Endelman JB; Stange M; Sorrells ME; Jannink JL; Melchinger AE
    Genetics; 2013 Jun; 194(2):493-503. PubMed ID: 23535384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haploid male fertility and spontaneous chromosome doubling evaluated in a diallel and recurrent selection experiment in maize.
    Molenaar WS; Schipprack W; Brauner PC; Melchinger AE
    Theor Appl Genet; 2019 Aug; 132(8):2273-2284. PubMed ID: 31062045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Trait Genomic Prediction Improves Accuracy of Selection among Doubled Haploid Lines in Maize.
    Hu H; Meng Y; Liu W; Chen S; Runcie DE
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes.
    Nielsen HM; Sonesson AK; Meuwissen TH
    J Anim Sci; 2011 Mar; 89(3):630-8. PubMed ID: 21036937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.