These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21547698)

  • 1. Effect of Zn(II) on the reduction and accumulation of Cr(VI) by Arthrobacter species.
    Tsibakhashvili NY; Kalabegishvili TL; Rcheulishvili AN; Gintury EN; Lomidze LG; Gvarjaladze DN; Rcheulishvili OA; Holman HY
    J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1803-8. PubMed ID: 21547698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron spin resonance study of chromium(V) formation and decomposition by basalt-inhabiting bacteria.
    Kalabegishvili TL; Tsibakhashvili NY; Holman HY
    Environ Sci Technol; 2003 Oct; 37(20):4678-84. PubMed ID: 14594378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epithermal neutron activation analysis of Cr(VI)-reducer basalt-inhabiting bacteria.
    Tsibakhashvili NY; Frontasyeva MV; Kirkesali EI; Aksenova NG; Kalabegishvili TL; Murusidze IG; Mosulishvili LM; Holman HY
    Anal Chem; 2006 Sep; 78(18):6285-90. PubMed ID: 16970299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium(V) complexes generated in Arthrobacter oxydans by simulation analysis of EPR spectra.
    Codd R; Lay PA; Tsibakhashvili NY; Kalabegishvili TL; Murusidze IG; Holman HY
    J Inorg Biochem; 2006 Nov; 100(11):1827-33. PubMed ID: 16959323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of chromium(VI) action on Arthrobacter oxydans.
    Asatiani NV; Abuladze MK; Kartvelishvili TM; Bakradze NG; Sapojnikova NA; Tsibakhashvili NY; Tabatadze LV; Lejava LV; Asanishvili LL; Holman HY
    Curr Microbiol; 2004 Nov; 49(5):321-6. PubMed ID: 15486705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste.
    Megharaj M; Avudainayagam S; Naidu R
    Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition of Cr(V)-diols to Cr(III) complexes by Arthrobacter oxydans.
    Tsibakhashvili NY; Kalabegishvili TL; Rcheulishvili AN; Murusidze IG; Rcheulishvili OA; Kerkenjia SM; Holman HY
    Microb Ecol; 2009 Feb; 57(2):360-6. PubMed ID: 19067030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens.
    Horton RN; Apel WA; Thompson VS; Sheridan PP
    BMC Microbiol; 2006 Jan; 6():5. PubMed ID: 16436214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotreatment of pyrene and Cr(VI) combined water pollution by mixed bacteria.
    Ge S; Gu J; Ai W; Dong X
    Sci Rep; 2021 Jan; 11(1):114. PubMed ID: 33420172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of cultural conditions of Arthrobacter sp. Sphe3 for growth-associated chromate(VI) reduction in free and immobilized cell systems.
    Ziagova MG; Koukkou AI; Liakopoulou-Kyriakides M
    Chemosphere; 2014 Jan; 95():535-40. PubMed ID: 24183628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium (VI) detoxification by oxidation and flocculation of exopolysaccharides from Arthrobacter sp. B4.
    Li Y; Li Q; Fengying Y; Bao J; Hu Z; Zhu W; Zhao Y; Lin Z; Dong Q
    Int J Biol Macromol; 2015 Nov; 81():235-40. PubMed ID: 26187190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexavalent chromium reduction by an actinomycete, arthrobacter crystallopoietes ES 32.
    Camargo FA; Bento FM; Okeke BC; Frankenberger WT
    Biol Trace Elem Res; 2004 Feb; 97(2):183-94. PubMed ID: 14985627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-dependent chromate toxicity mechanism in an environmental Arthrobacter isolate.
    Field EK; Blaskovich JP; Peyton BM; Gerlach R
    J Hazard Mater; 2018 Aug; 355():162-169. PubMed ID: 29800910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid reduction of Cr(VI) coupling with efficient removal of total chromium in the coexistence of Zn(0) and silica gel.
    Guo J; Li Y; Dai R; Lan Y
    J Hazard Mater; 2012 Dec; 243():265-71. PubMed ID: 23137547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge.
    Francisco R; Alpoim MC; Morais PV
    J Appl Microbiol; 2002; 92(5):837-43. PubMed ID: 11972686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Cr(VI) reduction and Zn(II) biosorption by Stenotrophomonas sp. and constitutive expression of related genes.
    Ge S; Ge SC
    Biotechnol Lett; 2016 May; 38(5):877-84. PubMed ID: 26861853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of chromate reductase activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 isolated from chromite mine overburden.
    Dey S; Paul AK
    Chemosphere; 2016 Aug; 156():69-75. PubMed ID: 27176938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine overburden.
    Dey S; Paul AK
    J Hazard Mater; 2012 Apr; 213-214():200-6. PubMed ID: 22361630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI).
    Lara P; Morett E; Juárez K
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25513-25521. PubMed ID: 27525740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics.
    Puzon GJ; Roberts AG; Kramer DM; Xun L
    Environ Sci Technol; 2005 Apr; 39(8):2811-7. PubMed ID: 15884380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.