These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21547733)

  • 1. Introduction to section II: omics in the biology of cystic fibrosis.
    Balch WE
    Methods Mol Biol; 2011; 742():189-91. PubMed ID: 21547733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of mass spectrometry to study proteomics and interactomics in cystic fibrosis.
    Balch WE; Yates JR
    Methods Mol Biol; 2011; 742():227-47. PubMed ID: 21547736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome.
    Iazzi M; Sadeghi S; Gupta GD
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endocytic trafficking of CFTR in health and disease.
    Ameen N; Silvis M; Bradbury NA
    J Cyst Fibros; 2007 Jan; 6(1):1-14. PubMed ID: 17098482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteomic profiling reveals differentially regulated proteins in cystic fibrosis cells.
    Rauniyar N; Gupta V; Balch WE; Yates JR
    J Proteome Res; 2014 Nov; 13(11):4668-75. PubMed ID: 24818864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics and Metabolomics for Cystic Fibrosis Research.
    Liessi N; Pedemonte N; Armirotti A; Braccia C
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The proteome speciation of an immortalized cystic fibrosis cell line: New perspectives on the pathophysiology of the disease.
    Puglia M; Landi C; Gagliardi A; Breslin L; Armini A; Brunetti J; Pini A; Bianchi L; Bini L
    J Proteomics; 2018 Jan; 170():28-42. PubMed ID: 28970102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability.
    Meng X; Clews J; Kargas V; Wang X; Ford RC
    Cell Mol Life Sci; 2017 Jan; 74(1):23-38. PubMed ID: 27734094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic Fibrosis: Pathophysiology of Lung Disease.
    Bergeron C; Cantin AM
    Semin Respir Crit Care Med; 2019 Dec; 40(6):715-726. PubMed ID: 31659725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular modelling approaches for cystic fibrosis transmembrane conductance regulator studies.
    Odolczyk N; Zielenkiewicz P
    Int J Biochem Cell Biol; 2014 Jul; 52():39-46. PubMed ID: 24735712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The HDAC inhibitor SAHA does not rescue CFTR membrane expression in Cystic Fibrosis.
    Bergougnoux A; Petit A; Knabe L; Bribes E; Chiron R; De Sario A; Claustres M; Molinari N; Vachier I; Taulan-Cadars M; Bourdin A
    Int J Biochem Cell Biol; 2017 Jul; 88():124-132. PubMed ID: 28478266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies.
    Amaral MD
    Curr Drug Targets; 2011 May; 12(5):683-93. PubMed ID: 21039334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoskeleton and CFTR.
    Edelman A
    Int J Biochem Cell Biol; 2014 Jul; 52():68-72. PubMed ID: 24685681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of proteomic technologies for understanding the premature proteolysis of CFTR.
    Henderson MJ; Singh OV; Zeitlin PL
    Expert Rev Proteomics; 2010 Aug; 7(4):473-86. PubMed ID: 20653504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.
    Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE
    Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ivacaftor: the first therapy acting on the primary cause of cystic fibrosis.
    McPhail GL; Clancy JP
    Drugs Today (Barc); 2013 Apr; 49(4):253-60. PubMed ID: 23616952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X; Eisman R; Xu J; Harsch AD; Mulberg AE; Bevins CL; Glick MC; Scanlin TF
    J Cell Physiol; 1996 Aug; 168(2):373-84. PubMed ID: 8707873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells.
    Suaud L; Miller K; Alvey L; Yan W; Robay A; Kebler C; Kreindler JL; Guttentag S; Hubbard MJ; Rubenstein RC
    J Biol Chem; 2011 Jun; 286(24):21239-53. PubMed ID: 21525008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular heterogeneity of CFTR expression and function in the lung: implications for gene therapy of cystic fibrosis.
    Jiang Q; Engelhardt JF
    Eur J Hum Genet; 1998 Jan; 6(1):12-31. PubMed ID: 9781011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.