These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21547736)

  • 1. Application of mass spectrometry to study proteomics and interactomics in cystic fibrosis.
    Balch WE; Yates JR
    Methods Mol Biol; 2011; 742():227-47. PubMed ID: 21547736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction to section II: omics in the biology of cystic fibrosis.
    Balch WE
    Methods Mol Biol; 2011; 742():189-91. PubMed ID: 21547733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signaling pathways of proteostasis network unraveled by proteomic approaches on the understanding of misfolded protein rescue.
    Gomes-Alves P; Neves S; Penque D
    Methods Enzymol; 2011; 491():217-33. PubMed ID: 21329803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proteome speciation of an immortalized cystic fibrosis cell line: New perspectives on the pathophysiology of the disease.
    Puglia M; Landi C; Gagliardi A; Breslin L; Armini A; Brunetti J; Pini A; Bianchi L; Bini L
    J Proteomics; 2018 Jan; 170():28-42. PubMed ID: 28970102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global proteomic approach unmasks involvement of keratins 8 and 18 in the delivery of cystic fibrosis transmembrane conductance regulator (CFTR)/deltaF508-CFTR to the plasma membrane.
    Davezac N; Tondelier D; Lipecka J; Fanen P; Demaugre F; Debski J; Dadlez M; Schrattenholz A; Cahill MA; Edelman A
    Proteomics; 2004 Dec; 4(12):3833-44. PubMed ID: 15529338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serum-Based Proteomics Profiling in Adult Patients with Cystic Fibrosis.
    Benabdelkamel H; Alamri H; Okla M; Masood A; Abdel Jabar M; Alanazi IO; Alfadda AA; Nizami I; Dasouki M; Abdel Rahman AM
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33050003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent properties of proteostasis in managing cystic fibrosis.
    Balch WE; Roth DM; Hutt DM
    Cold Spring Harb Perspect Biol; 2011 Feb; 3(2):. PubMed ID: 21421917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Down-regulation of the anti-inflammatory protein annexin A1 in cystic fibrosis knock-out mice and patients.
    Bensalem N; Ventura AP; Vallée B; Lipecka J; Tondelier D; Davezac N; Dos Santos A; Perretti M; Fajac A; Sermet-Gaudelus I; Renouil M; Lesure JF; Halgand F; Laprévote O; Edelman A
    Mol Cell Proteomics; 2005 Oct; 4(10):1591-601. PubMed ID: 16014420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics and Metabolomics for Cystic Fibrosis Research.
    Liessi N; Pedemonte N; Armirotti A; Braccia C
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular interactions and ion transport in cystic fibrosis.
    Guggino WB; Banks-Schlegel SP
    Am J Respir Crit Care Med; 2004 Oct; 170(7):815-20. PubMed ID: 15447951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis.
    Pankow S; Bamberger C; Calzolari D; Martínez-Bartolomé S; Lavallée-Adam M; Balch WE; Yates JR
    Nature; 2015 Dec; 528(7583):510-6. PubMed ID: 26618866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomic profiling reveals differentially regulated proteins in cystic fibrosis cells.
    Rauniyar N; Gupta V; Balch WE; Yates JR
    J Proteome Res; 2014 Nov; 13(11):4668-75. PubMed ID: 24818864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFTR: folding, misfolding and correcting the ΔF508 conformational defect.
    Lukacs GL; Verkman AS
    Trends Mol Med; 2012 Feb; 18(2):81-91. PubMed ID: 22138491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New lipidomic approaches in cystic fibrosis.
    Ollero M; Guerrera IC; Astarita G; Piomelli D; Edelman A
    Methods Mol Biol; 2011; 742():265-78. PubMed ID: 21547738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability.
    Meng X; Clews J; Kargas V; Wang X; Ford RC
    Cell Mol Life Sci; 2017 Jan; 74(1):23-38. PubMed ID: 27734094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy.
    Hutt DM; Mishra SK; Roth DM; Larsen MB; Angles F; Frizzell RA; Balch WE
    J Biol Chem; 2018 Aug; 293(35):13682-13695. PubMed ID: 29986884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modelling approaches for cystic fibrosis transmembrane conductance regulator studies.
    Odolczyk N; Zielenkiewicz P
    Int J Biochem Cell Biol; 2014 Jul; 52():39-46. PubMed ID: 24735712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis.
    Wang X; Venable J; LaPointe P; Hutt DM; Koulov AV; Coppinger J; Gurkan C; Kellner W; Matteson J; Plutner H; Riordan JR; Kelly JW; Yates JR; Balch WE
    Cell; 2006 Nov; 127(4):803-15. PubMed ID: 17110338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.