These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21547736)

  • 21. A chaperone trap contributes to the onset of cystic fibrosis.
    Coppinger JA; Hutt DM; Razvi A; Koulov AV; Pankow S; Yates JR; Balch WE
    PLoS One; 2012; 7(5):e37682. PubMed ID: 22701530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.
    Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE
    Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative differential proteomics of cystic fibrosis cell models by SILAC (stable isotope labelling in cell culture).
    Guerrera IC; Ollero M; Vieu DL; Edelman A
    Methods Mol Biol; 2011; 742():213-25. PubMed ID: 21547735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels.
    Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X
    J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repairing the basic defect in cystic fibrosis - one approach is not enough.
    Farinha CM; Matos P
    FEBS J; 2016 Jan; 283(2):246-64. PubMed ID: 26416076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cystic fibrosis enters the proteomics scene: new answers to old questions.
    Ollero M; Brouillard F; Edelman A
    Proteomics; 2006 Jul; 6(14):4084-99. PubMed ID: 16791827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Post-translational modifications of CFTR: insight into protein trafficking and cystic fibrosis disease.
    Amaral MD; Farinha CM
    FEBS J; 2013 Sep; 280(18):4395. PubMed ID: 23680006
    [No Abstract]   [Full Text] [Related]  

  • 28. Applications of proteomic technologies for understanding the premature proteolysis of CFTR.
    Henderson MJ; Singh OV; Zeitlin PL
    Expert Rev Proteomics; 2010 Aug; 7(4):473-86. PubMed ID: 20653504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies.
    Amaral MD
    Curr Drug Targets; 2011 May; 12(5):683-93. PubMed ID: 21039334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding Status Is Determinant over Traffic-Competence in Defining CFTR Interactors in the Endoplasmic Reticulum.
    Santos JD; Canato S; Carvalho AS; Botelho HM; Aloria K; Amaral MD; Matthiesen R; Falcao AO; Farinha CM
    Cells; 2019 Apr; 8(4):. PubMed ID: 31014000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CFTR structure and cystic fibrosis.
    Cant N; Pollock N; Ford RC
    Int J Biochem Cell Biol; 2014 Jul; 52():15-25. PubMed ID: 24534272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cystic fibrosis: a disease of altered protein folding.
    Qu BH; Strickland E; Thomas PJ
    J Bioenerg Biomembr; 1997 Oct; 29(5):483-90. PubMed ID: 9511933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hallmarks of therapeutic management of the cystic fibrosis functional landscape.
    Amaral MD; Balch WE
    J Cyst Fibros; 2015 Nov; 14(6):687-99. PubMed ID: 26526359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fixing cystic fibrosis by correcting CFTR domain assembly.
    Okiyoneda T; Lukacs GL
    J Cell Biol; 2012 Oct; 199(2):199-204. PubMed ID: 23071149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Keratin K18 increases cystic fibrosis transmembrane conductance regulator (CFTR) surface expression by binding to its C-terminal hydrophobic patch.
    Duan Y; Sun Y; Zhang F; Zhang WK; Wang D; Wang Y; Cao X; Hu W; Xie C; Cuppoletti J; Magin TM; Wang H; Wu Z; Li N; Huang P
    J Biol Chem; 2012 Nov; 287(48):40547-59. PubMed ID: 23045527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blue native/SDS-PAGE analysis reveals reduced expression of the mClCA3 protein in cystic fibrosis knock-out mice.
    Brouillard F; Bensalem N; Hinzpeter A; Tondelier D; Trudel S; Gruber AD; Ollero M; Edelman A
    Mol Cell Proteomics; 2005 Nov; 4(11):1762-75. PubMed ID: 16099848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the structural organization of the intracellular domains of CFTR.
    Moran O
    Int J Biochem Cell Biol; 2014 Jul; 52():7-14. PubMed ID: 24513531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator.
    Cho HJ; Gee HY; Baek KH; Ko SK; Park JM; Lee H; Kim ND; Lee MG; Shin I
    J Am Chem Soc; 2011 Dec; 133(50):20267-76. PubMed ID: 22074182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cystic fibrosis transmembrane conductance regulator-modifying medications: the future of cystic fibrosis treatment.
    Pettit RS
    Ann Pharmacother; 2012; 46(7-8):1065-75. PubMed ID: 22739718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targets for cystic fibrosis therapy: proteomic analysis and correction of mutant cystic fibrosis transmembrane conductance regulator.
    Collawn JF; Fu L; Bebok Z
    Expert Rev Proteomics; 2010 Aug; 7(4):495-506. PubMed ID: 20653506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.