These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21547736)

  • 61. Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators.
    Estabrooks S; Brodsky JL
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936842
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure.
    Linsdell P
    Channels (Austin); 2018; 12(1):284-290. PubMed ID: 30152709
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Understanding how cystic fibrosis mutations cause a loss of Cl- channel function.
    Sheppard DN; Ostedgaard LS
    Mol Med Today; 1996 Jul; 2(7):290-7. PubMed ID: 8796909
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Targeting the PI3K/Akt/mTOR signalling pathway in Cystic Fibrosis.
    Reilly R; Mroz MS; Dempsey E; Wynne K; Keely SJ; McKone EF; Hiebel C; Behl C; Coppinger JA
    Sci Rep; 2017 Aug; 7(1):7642. PubMed ID: 28794469
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cytoskeleton and CFTR.
    Edelman A
    Int J Biochem Cell Biol; 2014 Jul; 52():68-72. PubMed ID: 24685681
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Correcting the F508del-CFTR variant by modulating eukaryotic translation initiation factor 3-mediated translation initiation.
    Hutt DM; Loguercio S; Roth DM; Su AI; Balch WE
    J Biol Chem; 2018 Aug; 293(35):13477-13495. PubMed ID: 30006345
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genetics of Cystic Fibrosis: Clinical Implications.
    Egan ME
    Clin Chest Med; 2016 Mar; 37(1):9-16. PubMed ID: 26857764
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator.
    Zhang Z; Chen J
    Cell; 2016 Dec; 167(6):1586-1597.e9. PubMed ID: 27912062
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Clinical implications of cystic fibrosis transmembrane conductance regulator mutations.
    Mickle JE; Cutting GR
    Clin Chest Med; 1998 Sep; 19(3):443-58, v. PubMed ID: 9759548
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein.
    Brown CR; Hong-Brown LQ; Biwersi J; Verkman AS; Welch WJ
    Cell Stress Chaperones; 1996 Jun; 1(2):117-25. PubMed ID: 9222597
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The structural basis of cystic fibrosis.
    Meng X; Clews J; Martin ER; Ciuta AD; Ford RC
    Biochem Soc Trans; 2018 Oct; 46(5):1093-1098. PubMed ID: 30154098
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response.
    Gomes-Alves P; Couto F; Pesquita C; Coelho AV; Penque D
    Biochim Biophys Acta; 2010 Apr; 1804(4):856-65. PubMed ID: 20044041
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium.
    Zhang L; Button B; Gabriel SE; Burkett S; Yan Y; Skiadopoulos MH; Dang YL; Vogel LN; McKay T; Mengos A; Boucher RC; Collins PL; Pickles RJ
    PLoS Biol; 2009 Jul; 7(7):e1000155. PubMed ID: 19621064
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure.
    Lewis HA; Zhao X; Wang C; Sauder JM; Rooney I; Noland BW; Lorimer D; Kearins MC; Conners K; Condon B; Maloney PC; Guggino WB; Hunt JF; Emtage S
    J Biol Chem; 2005 Jan; 280(2):1346-53. PubMed ID: 15528182
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural mechanisms of CFTR function and dysfunction.
    Hwang TC; Yeh JT; Zhang J; Yu YC; Yeh HI; Destefano S
    J Gen Physiol; 2018 Apr; 150(4):539-570. PubMed ID: 29581173
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Proteomic and ionomic profiling reveals significant alterations of protein expression and calcium homeostasis in cystic fibrosis cells.
    Ciavardelli D; D'Orazio M; Pieroni L; Consalvo A; Rossi C; Sacchetta P; Di Ilio C; Battistoni A; Urbani A
    Mol Biosyst; 2013 Jun; 9(6):1117-26. PubMed ID: 23609890
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR).
    Caohuy H; Yang Q; Eudy Y; Ha TA; Xu AE; Glover M; Frizzell RA; Jozwik C; Pollard HB
    J Biol Chem; 2014 Dec; 289(52):35953-68. PubMed ID: 25384981
    [TBL] [Abstract][Full Text] [Related]  

  • 79. De novo biosynthetic profiling of high abundance proteins in cystic fibrosis lung epithelial cells.
    Pollard HB; Eidelman O; Jozwik C; Huang W; Srivastava M; Ji XD; McGowan B; Norris CF; Todo T; Darling T; Mogayzel PJ; Zeitlin PL; Wright J; Guggino WB; Metcalf E; Driscoll WJ; Mueller G; Paweletz C; Jacobowitz DM
    Mol Cell Proteomics; 2006 Sep; 5(9):1628-37. PubMed ID: 16829594
    [TBL] [Abstract][Full Text] [Related]  

  • 80. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells.
    Suaud L; Miller K; Alvey L; Yan W; Robay A; Kebler C; Kreindler JL; Guttentag S; Hubbard MJ; Rubenstein RC
    J Biol Chem; 2011 Jun; 286(24):21239-53. PubMed ID: 21525008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.