These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2154829)

  • 1. Evaluation of proton density by magnetic resonance imaging: phantom experiments and analysis of multiple component proton transverse relaxation.
    Brix G; Schad LR; Lorenz WJ
    Phys Med Biol; 1990 Jan; 35(1):53-66. PubMed ID: 2154829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR imaging of fat-containing tissues: valuation of two quantitative imaging techniques in comparison with localized proton spectroscopy.
    Brix G; Heiland S; Bellemann ME; Koch T; Lorenz WJ
    Magn Reson Imaging; 1993; 11(7):977-91. PubMed ID: 8231682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-exponential analysis of spin-spin proton relaxation times in MR imaging using surface coils.
    Schad LR; Brix G; Semmler W; Gückel F; Lorenz WJ
    Magn Reson Imaging; 1989; 7(4):357-62. PubMed ID: 2554085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo tissue characterization of human brain by chisquares parameter maps: multiparameter proton T2-relaxation analysis.
    Cheng KH
    Magn Reson Imaging; 1994; 12(7):1099-109. PubMed ID: 7997097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiexponential proton spin-spin relaxation in MR imaging of human brain tumors.
    Schad LR; Brix G; Zuna I; Härle W; Lorenz WJ; Semmler W
    J Comput Assist Tomogr; 1989; 13(4):577-87. PubMed ID: 2545751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo proton magnetic resonance spectroscopy of liver metabolites in non-alcoholic fatty liver disease in rats: T2 relaxation times in methylene protons.
    Song KH; Baek HM; Lee DW; Choe BY
    Chem Phys Lipids; 2015 Oct; 191():1-7. PubMed ID: 26200917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of necrosis in human tumour xenografts by proton magnetic resonance imaging.
    Jakobsen I; Kaalhus O; Lyng H; Rofstad EK
    Br J Cancer; 1995 Mar; 71(3):456-61. PubMed ID: 7880724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative magnetic resonance methods for in vivo investigation of the human liver and spleen. Technical aspects and preliminary clinical results.
    Thomsen C
    Acta Radiol Suppl; 1996; 401():1-34. PubMed ID: 8604619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A post-processing method for multiexponential spin-spin relaxation analysis of MRI signals.
    Gensanne D; Josse G; Lagarde JM; Vincensini D
    Phys Med Biol; 2005 Aug; 50(16):3755-72. PubMed ID: 16077225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bi-exponential proton transverse relaxation rate (R2) image analysis using RF field intensity-weighted spin density projection: potential for R2 measurement of iron-loaded liver.
    Clark PR; Chua-anusorn W; St Pierre TG
    Magn Reson Imaging; 2003 Jun; 21(5):519-30. PubMed ID: 12878262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T2 quantification from only proton density and T2-weighted MRI by modelling actual refocusing angles.
    McPhee KC; Wilman AH
    Neuroimage; 2015 Sep; 118():642-50. PubMed ID: 26049150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-exponential water proton spin-lattice relaxation in biological tissues and its implications for quantitative NMR imaging.
    Bakker CJ; Vriend J
    Phys Med Biol; 1984 May; 29(5):509-18. PubMed ID: 6330769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative magnetic resonance imaging of subcutaneous adipose tissue.
    Gensanne D; Josse G; Theunis J; Lagarde JM; Vincensini D
    Skin Res Technol; 2009 Feb; 15(1):45-50. PubMed ID: 19152578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution of biexponential transverse relaxation in magnetic resonance imaging.
    Fransson A; Ericsson A; Jung B; Henriksson U
    Phys Med Biol; 1989 Mar; 34(3):305-14. PubMed ID: 2928388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision, accuracy, and image plane uniformity in NMR relaxation time imaging on a 1.5 T whole-body MR imaging system.
    Andersen C; Jensen FT
    Magn Reson Imaging; 1994; 12(5):775-84. PubMed ID: 7934664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood oxygen level-dependent magnetic resonance imaging of the kidneys: influence of spatial resolution on the apparent R2* transverse relaxation rate of renal tissue.
    Rossi C; Sharma P; Pazahr S; Alkadhi H; Nanz D; Boss A
    Invest Radiol; 2013 Sep; 48(9):671-7. PubMed ID: 23571833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the maximum likelihood principle to separate exponential terms in T2 relaxation of nuclear magnetic resonance.
    Sandor T; Bleier AR; Ruenzel PW; Adams DF; Jolesz FA
    Magn Reson Imaging; 1988; 6(1):27-40. PubMed ID: 3352478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved
    Niesporek SC; Umathum R; Fiedler TM; Bachert P; Ladd ME; Nagel AM
    MAGMA; 2017 Dec; 30(6):519-536. PubMed ID: 28550649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of parotid gland tissue: a description of an MRI protocol set-up and results of in-vivo applications.
    Mascaro L; Duina A; Grazioli L
    Magn Reson Imaging; 1995; 13(4):531-44. PubMed ID: 7674848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method dependence of proton spin-lattice relaxation analysis in biologic tissues.
    Komu M; Alanen A; Määttänen H; Kormano M
    Acta Radiol; 1989; 30(1):97-100. PubMed ID: 2536550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.