These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 2154849)
1. NMR characterization of surface interactions in the cytochrome b5-cytochrome c complex. Burch AM; Rigby SE; Funk WD; MacGillivray RT; Mauk MR; Mauk AG; Moore GR Science; 1990 Feb; 247(4944):831-3. PubMed ID: 2154849 [TBL] [Abstract][Full Text] [Related]
2. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c. Rodríguez-Marañón MJ; Qiu F; Stark RE; White SP; Zhang X; Foundling SI; Rodríguez V; Schilling CL; Bunce RA; Rivera M Biochemistry; 1996 Dec; 35(50):16378-90. PubMed ID: 8973214 [TBL] [Abstract][Full Text] [Related]
3. The influence of Glu44 and Glu56 of cytochrome b5 on the protein structure and interaction with cytochrome c. Sun YL; Xie Y; Wang YH; Xiao GT; Huang ZX Protein Eng; 1996 Jul; 9(7):555-8. PubMed ID: 8844826 [TBL] [Abstract][Full Text] [Related]
4. The formation of protein complexes between ferricytochrome b5 and ferricytochrome c studied using high-resolution 1H-NMR spectroscopy. Whitford D; Concar DW; Veitch NC; Williams RJ Eur J Biochem; 1990 Sep; 192(3):715-21. PubMed ID: 2170130 [TBL] [Abstract][Full Text] [Related]
5. The role of the internal hydrogen bond network in first-order protein electron transfer between Saccharomyces cerevisiae iso-1-cytochrome c and bovine microsomal cytochrome b5. Whitford D; Gao Y; Pielak GJ; Williams RJ; McLendon GL; Sherman F Eur J Biochem; 1991 Sep; 200(2):359-67. PubMed ID: 1653702 [TBL] [Abstract][Full Text] [Related]
6. NMR study of the interaction between cytochrome b5 and cytochrome c. Observation of a ternary complex formed by the two proteins and [Cr(en)3]3+. Hartshorn RT; Mauk AG; Mauk MR; Moore GR FEBS Lett; 1987 Mar; 213(2):391-5. PubMed ID: 3030818 [TBL] [Abstract][Full Text] [Related]
7. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods. Muskett FW; Kelly GP; Whitford D J Mol Biol; 1996 Apr; 258(1):172-89. PubMed ID: 8613986 [TBL] [Abstract][Full Text] [Related]
8. N epsilon,N epsilon-dimethyl-lysine cytochrome c as an NMR probe for lysine involvement in protein-protein complex formation. Moore GR; Cox MC; Crowe D; Osborne MJ; Rosell FI; Bujons J; Barker PD; Mauk MR; Mauk AG Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):439-49. PubMed ID: 9601073 [TBL] [Abstract][Full Text] [Related]
9. Structure, interaction and electron transfer between cytochrome b5, its E44A and/or E56A mutants and cytochrome c. Sun YL; Wang YH; Yan MM; Sun BY; Xie Y; Huang ZX; Jiang SK; Wu HM J Mol Biol; 1999 Jan; 285(1):347-59. PubMed ID: 9878411 [TBL] [Abstract][Full Text] [Related]
10. The orientations of cytochrome c in the highly dynamic complex with cytochrome b5 visualized by NMR and docking using HADDOCK. Volkov AN; Ferrari D; Worrall JA; Bonvin AM; Ubbink M Protein Sci; 2005 Mar; 14(3):799-811. PubMed ID: 15689516 [TBL] [Abstract][Full Text] [Related]
11. Pseudocontact shifts used in the restraint of the solution structures of electron transfer complexes. Guiles RD; Sarma S; DiGate RJ; Banville D; Basus VJ; Kuntz ID; Waskell L Nat Struct Biol; 1996 Apr; 3(4):333-9. PubMed ID: 8599759 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic characterization of the interaction between cytochrome b5 and cytochrome c. McLean MA; Sligar SG Biochem Biophys Res Commun; 1995 Oct; 215(1):316-20. PubMed ID: 7575608 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the complexes formed by cytochrome P450cam with cytochrome b5 and putidaredoxin, two effectors of camphor hydroxylase activity. Rui L; Pochapsky SS; Pochapsky TC Biochemistry; 2006 Mar; 45(12):3887-97. PubMed ID: 16548516 [TBL] [Abstract][Full Text] [Related]
14. 1H-n.m.r. investigation of the interaction between cytochrome c and cytochrome b5. Eley CG; Moore GR Biochem J; 1983 Oct; 215(1):11-21. PubMed ID: 6312971 [TBL] [Abstract][Full Text] [Related]
15. The identification of cation-binding domains on the surface of microsomal cytochrome b5 using 1H-NMR paramagnetic difference spectroscopy. Whitford D Eur J Biochem; 1992 Jan; 203(1-2):211-23. PubMed ID: 1730227 [TBL] [Abstract][Full Text] [Related]
16. The influence of mutation at Glu44 and Glu56 of cytochrome b5 on the protein's stabilization and interaction between cytochrome c and cytochrome b5. Qian W; Sun YL; Wang YH; Zhuang JH; Xie Y; Huang ZX Biochemistry; 1998 Oct; 37(40):14137-50. PubMed ID: 9760250 [TBL] [Abstract][Full Text] [Related]
17. Experimental and theoretical analysis of the interaction between cytochrome c and cytochrome b5. Mauk AG; Mauk MR; Moore GR; Northrup SH J Bioenerg Biomembr; 1995 Jun; 27(3):311-30. PubMed ID: 8847345 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the solution structures and mobility of oxidised and reduced cytochrome b5 by 2D NMR spectroscopy. Veitch NC; Concar DW; Williams RJ; Whitford D FEBS Lett; 1988 Sep; 238(1):49-55. PubMed ID: 3169253 [TBL] [Abstract][Full Text] [Related]
20. Expression, purification, and functional reconstitution of Bai J; Wang J; Ravula T; Im SC; Anantharamaiah GM; Waskell L; Ramamoorthy A Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183194. PubMed ID: 31953231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]