BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 21548602)

  • 1. Elucidation of the Hsp90 C-terminal inhibitor binding site.
    Matts RL; Dixit A; Peterson LB; Sun L; Voruganti S; Kalyanaraman P; Hartson SD; Verkhivker GM; Blagg BS
    ACS Chem Biol; 2011 Aug; 6(8):800-7. PubMed ID: 21548602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.
    Allan RK; Mok D; Ward BK; Ratajczak T
    J Biol Chem; 2006 Mar; 281(11):7161-71. PubMed ID: 16421106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32.
    Chatterjee BK; Jayaraj A; Kumar V; Blagg B; Davis RE; Jayaram B; Deep S; Chaudhuri TK
    J Biol Chem; 2019 Apr; 294(16):6450-6467. PubMed ID: 30792306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions.
    Yun BG; Huang W; Leach N; Hartson SD; Matts RL
    Biochemistry; 2004 Jun; 43(25):8217-29. PubMed ID: 15209518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.
    Marcu MG; Chadli A; Bouhouche I; Catelli M; Neckers LM
    J Biol Chem; 2000 Nov; 275(47):37181-6. PubMed ID: 10945979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting silibinin as a novobiocin-like Hsp90 C-terminal inhibitor: Computational modeling and experimental validation.
    Cuyàs E; Verdura S; Micol V; Joven J; Bosch-Barrera J; Encinar JA; Menendez JA
    Food Chem Toxicol; 2019 Oct; 132():110645. PubMed ID: 31254591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone.
    Yamada S; Ono T; Mizuno A; Nemoto TK
    Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the Hsp90 N Domain Identify a Site that Controls Dimer Opening and Expand Human Hsp90α Function in Yeast.
    Reidy M; Masison DC
    J Mol Biol; 2020 Jul; 432(16):4673-4689. PubMed ID: 32565117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket.
    Söti C; Rácz A; Csermely P
    J Biol Chem; 2002 Mar; 277(9):7066-75. PubMed ID: 11751878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liberation of the intramolecular interaction as the mechanism of heat-induced activation of HSP90 molecular chaperone.
    Tanaka E; Nemoto TK; Ono T
    Eur J Biochem; 2001 Oct; 268(20):5270-7. PubMed ID: 11606188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site.
    Harris SF; Shiau AK; Agard DA
    Structure; 2004 Jun; 12(6):1087-97. PubMed ID: 15274928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins.
    Marcu MG; Schulte TW; Neckers L
    J Natl Cancer Inst; 2000 Feb; 92(3):242-8. PubMed ID: 10655441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-binding characteristics of proteins in the 90 kDa heat shock protein family.
    Nemoto TK; Ono T; Tanaka K
    Biochem J; 2001 Mar; 354(Pt 3):663-70. PubMed ID: 11237871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting conformational dynamics in drug discovery: design of C-terminal inhibitors of Hsp90 with improved activities.
    Moroni E; Zhao H; Blagg BS; Colombo G
    J Chem Inf Model; 2014 Jan; 54(1):195-208. PubMed ID: 24397468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain-domain interactions of HtpG, an Escherichia coli homologue of eukaryotic HSP90 molecular chaperone.
    Nemoto TK; Ono T; Kobayakawa T; Tanaka E; Baba TT; Tanaka K; Takagi T; Gotoh T
    Eur J Biochem; 2001 Oct; 268(20):5258-69. PubMed ID: 11606187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of the N-terminal and middle domains of E. coli Hsp90 and conformation changes upon ADP binding.
    Huai Q; Wang H; Liu Y; Kim HY; Toft D; Ke H
    Structure; 2005 Apr; 13(4):579-90. PubMed ID: 15837196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: a plausible therapeutic approach in Alzheimer's disease.
    Khalid S; Paul S
    Med Hypotheses; 2014 Jul; 83(1):39-46. PubMed ID: 24785461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hsp90 inhibitors identified from a library of novobiocin analogues.
    Yu XM; Shen G; Neckers L; Blake H; Holzbeierlein J; Cronk B; Blagg BS
    J Am Chem Soc; 2005 Sep; 127(37):12778-9. PubMed ID: 16159253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.