BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 215489)

  • 1. Phosphorylation of specific rat intestinal microvillus and basal-lateral membrane proteins by cyclic nucleotides.
    Shlatz LJ; Kimberg DV; Cattieu KA
    Gastroenterology; 1979 Feb; 76(2):293-9. PubMed ID: 215489
    [No Abstract]   [Full Text] [Related]  

  • 2. Cyclic nucleotide-dependent phosphorylation of rat intestinal microvillus and basal-lateral membrane proteins by an endogenous protein kinase.
    Shlatz LJ; Kimberg DV; Cattieu KA
    Gastroenterology; 1978 Nov; 75(5):838-46. PubMed ID: 29817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic-GMP- and cyclic-AMP-induced intestinal ion secretion: analysis at the level of brush border membrane vesicles.
    van Dommelen FS; de Jonge HR
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():303-13. PubMed ID: 6328922
    [No Abstract]   [Full Text] [Related]  

  • 4. Ca2+-calmodulin-, cyclic AMP- and cyclic GMP-induced phosphorylation of proteins in purified microvillus membranes of rabbit ileum.
    Donowitz M; Cohen ME; Gudewich R; Taylor L; Sharp GW
    Biochem J; 1984 Apr; 219(2):573-81. PubMed ID: 6331391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotide-dependent phosphorylation of intestinal epithelium proteins.
    de Jonge HR
    Nature; 1976 Aug; 262(5569):591-3. PubMed ID: 183134
    [No Abstract]   [Full Text] [Related]  

  • 6. Cyclic GMP-dependent protein kinase in intestinal brushborders.
    de Jonge HR
    Adv Cyclic Nucleotide Res; 1981; 14():315-33. PubMed ID: 6269385
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanisms by which cyclic nucleotides and other intracellular mediators regulate secretion.
    de Jonge HR; Lohmann SM
    Ciba Found Symp; 1985; 112():116-38. PubMed ID: 2408829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of small intestinal protein metabolism.
    Alpers DH; Kinzie JL
    Gastroenterology; 1973 Mar; 64(3):471-96. PubMed ID: 4570873
    [No Abstract]   [Full Text] [Related]  

  • 9. Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator.
    Markert T; Vaandrager AB; Gambaryan S; Pöhler D; Häusler C; Walter U; De Jonge HR; Jarchau T; Lohmann SM
    J Clin Invest; 1995 Aug; 96(2):822-30. PubMed ID: 7543493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Enzymatic-transport system of epithelial cells, stroma, and the muscle-serous layer of the rat small intestine].
    Gromova LV; Gusev SA; Egorova VV; Iezuitova NN; Nikitina AA; Timofeeva NM; Tsvetkova VA; Ugolev AM
    Dokl Akad Nauk SSSR; 1991; 317(5):1254-7. PubMed ID: 1743088
    [No Abstract]   [Full Text] [Related]  

  • 11. Adenylate and guanylate cyclase activities and cellular differentiation in rat small intestine.
    Quill H; Weiser MM
    Gastroenterology; 1975 Aug; 69(2):470-8. PubMed ID: 238899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cyclic nucleotides and cholera toxin on in vivo and in vitro phosphorylation of small intestinal brush border membranes.
    Scalera V; Biber J; Murer H
    Biochim Biophys Acta; 1983 May; 730(2):321-6. PubMed ID: 6303409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Phosphorylation of proteins in the kidney papillary zone by endogenous cAMP-dependent protein kinases].
    Dzgoev SG; Ivanova LN
    Biokhimiia; 1990 May; 55(5):814-21. PubMed ID: 2168216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ and cyclic AMP in regulation of intestinal Na, K, and Cl transport.
    Donowitz M; Welsh MJ
    Annu Rev Physiol; 1986; 48():135-50. PubMed ID: 3010813
    [No Abstract]   [Full Text] [Related]  

  • 15. Lipid dynamics and lipid-protein interactions in rat enterocyte basolateral and microvillus membranes.
    Brasitus TA; Schachter D
    Biochemistry; 1980 Jun; 19(12):2763-9. PubMed ID: 6249340
    [No Abstract]   [Full Text] [Related]  

  • 16. Cyclic nucleotides and their role in gastrointestinal secretion.
    Kimbert DV
    Gastroenterology; 1974 Nov; 67(5):1023-64. PubMed ID: 4154262
    [No Abstract]   [Full Text] [Related]  

  • 17. Membrane phospholipid metabolism and signal transduction for protein phosphorylation.
    Takai Y; Kikkawa U; Kaibuchi K; Nishizuka Y
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 18():119-58. PubMed ID: 6093478
    [No Abstract]   [Full Text] [Related]  

  • 18. Protein phosphorylation and the control of intestinal electrolyte transport.
    Sharp GW; Cohen ME; Gudewich R; Taylor L; Button D; Albrewczynski D; Donowitz M
    Kroc Found Ser; 1984; 17():241-61. PubMed ID: 6096511
    [No Abstract]   [Full Text] [Related]  

  • 19. The fine structure and localization of alkaline phosphatase activity of the small intestinal epithelium in the postnatal developing rat.
    Ono K
    Acta Histochem; 1975; 52(1):117-33. PubMed ID: 809974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective cyclic adenosine 3'-5'-monophosphate-dependent phosphorylation of plasma membrane proteins in chemically and virally transformed cells.
    Scott RE; Dousa TP
    Cancer Res; 1980 Aug; 40(8 Pt 1):2860-8. PubMed ID: 6248215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.