These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 21549461)
1. Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Qu J; Yuan X; Wang X; Shao P Environ Pollut; 2011 Jul; 159(7):1783-8. PubMed ID: 21549461 [TBL] [Abstract][Full Text] [Related]
2. A new insight into the recycling of hyperaccumulator: synthesis of the mixed Cu and Zn oxide nanoparticles using Brassica juncea L. Qu J; Luo C; Cong Q; Yuan X Int J Phytoremediation; 2012 Oct; 14(9):854-60. PubMed ID: 22908650 [TBL] [Abstract][Full Text] [Related]
3. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil. An ZZ; Huang ZC; Lei M; Liao XY; Zheng YM; Chen TB Chemosphere; 2006 Feb; 62(5):796-802. PubMed ID: 15987653 [TBL] [Abstract][Full Text] [Related]
4. Zinc hyperaccumulation and uptake by Potentilla griffithii Hook. Qiu R; Fang X; Tang Y; Du S; Zeng X; Brewer E Int J Phytoremediation; 2006; 8(4):299-310. PubMed ID: 17305304 [TBL] [Abstract][Full Text] [Related]
5. Accumulation and tolerance characteristics of zinc in Agropyron cristatum plants exposed to zinc-contaminated soil. Meng L; Guo Q; Mao P; Tian X Bull Environ Contam Toxicol; 2013 Sep; 91(3):298-301. PubMed ID: 23771314 [TBL] [Abstract][Full Text] [Related]
6. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils. Lin W; Xiao T; Wu Y; Ao Z; Ning Z Chemosphere; 2012 Feb; 86(8):837-42. PubMed ID: 22154155 [TBL] [Abstract][Full Text] [Related]
7. Quantification of metal uptake in Spinacia oleracea irrigated with water containing a mixture of CuO and ZnO nanoparticles. Singh D; Kumar A Chemosphere; 2020 Mar; 243():125239. PubMed ID: 31733544 [TBL] [Abstract][Full Text] [Related]
8. Zinc oxide nano-particles--sonochemical synthesis, characterization and application for photo-remediation of heavy metal. Banerjee P; Chakrabarti S; Maitra S; Dutta BK Ultrason Sonochem; 2012 Jan; 19(1):85-93. PubMed ID: 21665511 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled nanofibers from leucine derived amphiphiles as nanoreactors for growth of ZnO nanoparticles. Johnson KT; Gribb TE; Smoak EM; Banerjee IA Chem Commun (Camb); 2010 Mar; 46(10):1757-9. PubMed ID: 20177640 [TBL] [Abstract][Full Text] [Related]
10. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
11. Controlled production of ZnO nanoparticles from zinc glycerolate in a sol-gel silica matrix. Moleski R; Leontidis E; Krumeich F J Colloid Interface Sci; 2006 Oct; 302(1):246-53. PubMed ID: 16890234 [TBL] [Abstract][Full Text] [Related]
13. Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator. Fabrega J; Tantra R; Amer A; Stolpe B; Tomkins J; Fry T; Lead JR; Tyler CR; Galloway TS Environ Sci Technol; 2012 Jan; 46(2):1128-35. PubMed ID: 22191541 [TBL] [Abstract][Full Text] [Related]
14. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite. Voegelin A; Jacquat O; Pfister S; Barmettler K; Scheinost AC; Kretzschmar R Environ Sci Technol; 2011 Jan; 45(1):255-61. PubMed ID: 21142002 [TBL] [Abstract][Full Text] [Related]
15. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Pedron F; Petruzzelli G; Barbafieri M; Tassi E Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142 [TBL] [Abstract][Full Text] [Related]
16. One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications. Tang X; Choo ES; Li L; Ding J; Xue J Langmuir; 2009 May; 25(9):5271-5. PubMed ID: 19397360 [TBL] [Abstract][Full Text] [Related]
17. Plant availability of zinc and copper in soil after contamination with brass foundry filter dust: effect of four years of aging. Hilber I; Voegelin A; Barmettler K; Kretzschmar R J Environ Qual; 2007; 36(1):44-52. PubMed ID: 17215211 [TBL] [Abstract][Full Text] [Related]
18. The growth of Co:ZnO/ZnO core/shell colloidal quantum dots: changes in nanocrystal size, concentration and dopant coordination. Lommens P; Lambert K; Loncke F; De Muynck D; Balkan T; Vanhaecke F; Vrielinck H; Callens F; Hens Z Chemphyschem; 2008 Feb; 9(3):484-91. PubMed ID: 18247439 [TBL] [Abstract][Full Text] [Related]
19. Morphological control and assembly of zinc oxide using a biotemplate. Tomczak MM; Gupta MK; Drummy LF; Rozenzhak SM; Naik RR Acta Biomater; 2009 Mar; 5(3):876-82. PubMed ID: 19117819 [TBL] [Abstract][Full Text] [Related]