BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21549583)

  • 21. Regulation of energy metabolism by long-chain fatty acids.
    Nakamura MT; Yudell BE; Loor JJ
    Prog Lipid Res; 2014 Jan; 53():124-44. PubMed ID: 24362249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP-dependent.
    Hanke N; Scheibe RJ; Manukjan G; Ewers D; Umeda PK; Chang KC; Kubis HP; Gros G; Meissner JD
    Biochim Biophys Acta; 2011 Mar; 1813(3):377-89. PubMed ID: 21215280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retinoblastoma Protein Knockdown Favors Oxidative Metabolism and Glucose and Fatty Acid Disposal in Muscle Cells.
    Petrov PD; Ribot J; López-Mejía IC; Fajas L; Palou A; Bonet ML
    J Cell Physiol; 2016 Mar; 231(3):708-18. PubMed ID: 26241807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor.
    Ukropcova B; McNeil M; Sereda O; de Jonge L; Xie H; Bray GA; Smith SR
    J Clin Invest; 2005 Jul; 115(7):1934-41. PubMed ID: 16007256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LXR{beta} is the dominant LXR subtype in skeletal muscle regulating lipogenesis and cholesterol efflux.
    Hessvik NP; Boekschoten MV; Baltzersen MA; Kersten S; Xu X; Andersén H; Rustan AC; Thoresen GH
    Am J Physiol Endocrinol Metab; 2010 Mar; 298(3):E602-13. PubMed ID: 19996385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SUMO-Specific Protease 2 (SENP2) Is an Important Regulator of Fatty Acid Metabolism in Skeletal Muscle.
    Koo YD; Choi JW; Kim M; Chae S; Ahn BY; Kim M; Oh BC; Hwang D; Seol JH; Kim YB; Park YJ; Chung SS; Park KS
    Diabetes; 2015 Jul; 64(7):2420-31. PubMed ID: 25784542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insulin resistance: cross-talk between adipose tissue and skeletal muscle, through free fatty acids, liver X receptor, and peroxisome proliferator-activated receptor-α signaling.
    Olson AL
    Horm Mol Biol Clin Investig; 2013 Sep; 15(3):115-21. PubMed ID: 25436738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dietary phosphate restriction induces hepatic lipid accumulation through dysregulation of cholesterol metabolism in mice.
    Tanaka S; Yamamoto H; Nakahashi O; Kagawa T; Ishiguro M; Masuda M; Kozai M; Ikeda S; Taketani Y; Takeda E
    Nutr Res; 2013 Jul; 33(7):586-93. PubMed ID: 23827134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice.
    Amengual J; Ribot J; Bonet ML; Palou A
    Obesity (Silver Spring); 2008 Mar; 16(3):585-91. PubMed ID: 18239600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular responses to excess fatty acids: focus on ubiquitin regulatory X domain-containing protein 8.
    Kim H; Ye J
    Curr Opin Lipidol; 2014 Apr; 25(2):118-24. PubMed ID: 24378746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The molecular structure of thio-ether fatty acids influences PPAR-dependent regulation of lipid metabolism.
    Lund J; Stensrud C; Rajender ; Bohov P; Thoresen GH; Berge RK; Wright M; Kamal A; Rustan AC; Miller AD; Skorve J
    Bioorg Med Chem; 2016 Mar; 24(6):1191-203. PubMed ID: 26874397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease.
    Smith AG; Muscat GE
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2047-63. PubMed ID: 15922648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exercise in vivo marks human myotubes in vitro: Training-induced increase in lipid metabolism.
    Lund J; Rustan AC; Løvsletten NG; Mudry JM; Langleite TM; Feng YZ; Stensrud C; Brubak MG; Drevon CA; Birkeland KI; Kolnes KJ; Johansen EI; Tangen DS; Stadheim HK; Gulseth HL; Krook A; Kase ET; Jensen J; Thoresen GH
    PLoS One; 2017; 12(4):e0175441. PubMed ID: 28403174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nuclear receptors as drug targets for metabolic disease.
    Schulman IG
    Adv Drug Deliv Rev; 2010 Oct; 62(13):1307-15. PubMed ID: 20655343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PPARs and the orchestration of metabolic fuel selection.
    Sugden MC; Zariwala MG; Holness MJ
    Pharmacol Res; 2009 Sep; 60(3):141-50. PubMed ID: 19646653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatty acids regulation of inflammatory and metabolic genes.
    Masi LN; Rodrigues AC; Curi R
    Curr Opin Clin Nutr Metab Care; 2013 Jul; 16(4):418-24. PubMed ID: 23739628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipids, lipoproteins, and peroxisome proliferator activated receptor-delta.
    Sprecher DL
    Am J Cardiol; 2007 Dec; 100(11 A):n20-4. PubMed ID: 18047848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Skeletal muscle as a target of LXR agonist after long-term treatment: focus on lipid homeostasis.
    Archer A; Laurencikiene J; Ahmed O; Steffensen KR; Parini P; Gustafsson JÅ; Korach-André M
    Am J Physiol Endocrinol Metab; 2014 Mar; 306(5):E494-502. PubMed ID: 24368671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced glucose metabolism is preserved in cultured primary myotubes from obese donors in response to exercise training.
    Bourlier V; Saint-Laurent C; Louche K; Badin PM; Thalamas C; de Glisezinski I; Langin D; Sengenes C; Moro C
    J Clin Endocrinol Metab; 2013 Sep; 98(9):3739-47. PubMed ID: 23884778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation.
    Sipula IJ; Brown NF; Perdomo G
    Metabolism; 2006 Dec; 55(12):1637-44. PubMed ID: 17142137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.