BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21549583)

  • 41. The liver X receptor: control of cellular lipid homeostasis and beyond Implications for drug design.
    Oosterveer MH; Grefhorst A; Groen AK; Kuipers F
    Prog Lipid Res; 2010 Oct; 49(4):343-52. PubMed ID: 20363253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism.
    Wende AR; Huss JM; Schaeffer PJ; Giguère V; Kelly DP
    Mol Cell Biol; 2005 Dec; 25(24):10684-94. PubMed ID: 16314495
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor gamma and fatty acid transferase expressions.
    Chen Y; Li Y; Wang Y; Wen Y; Sun C
    Metabolism; 2009 Dec; 58(12):1694-702. PubMed ID: 19767038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Are peroxisome proliferator-activated receptors involved in skeletal muscle wasting during experimental cancer cachexia? Role of beta2-adrenergic agonists.
    Fuster G; Busquets S; Ametller E; Olivan M; Almendro V; de Oliveira CC; Figueras M; López-Soriano FJ; Argilés JM
    Cancer Res; 2007 Jul; 67(13):6512-9. PubMed ID: 17616713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nuclear receptors in lipid metabolism: targeting the heart of dyslipidemia.
    Beaven SW; Tontonoz P
    Annu Rev Med; 2006; 57():313-29. PubMed ID: 16409152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Malonyl CoenzymeA decarboxylase regulates lipid and glucose metabolism in human skeletal muscle.
    Bouzakri K; Austin R; Rune A; Lassman ME; Garcia-Roves PM; Berger JP; Krook A; Chibalin AV; Zhang BB; Zierath JR
    Diabetes; 2008 Jun; 57(6):1508-16. PubMed ID: 18314420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The nuclear receptor LXR is a glucose sensor.
    Mitro N; Mak PA; Vargas L; Godio C; Hampton E; Molteni V; Kreusch A; Saez E
    Nature; 2007 Jan; 445(7124):219-23. PubMed ID: 17187055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Putative PPAR target genes express highly in skeletal muscle of insulin-resistant MetS model SHR/NDmc-cp rats.
    Hariya N; Miyake K; Kubota T; Goda T; Mochizuki K
    J Nutr Sci Vitaminol (Tokyo); 2015; 61(1):28-36. PubMed ID: 25994137
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cross-talk between fatty acid and cholesterol metabolism mediated by liver X receptor-alpha.
    Tobin KA; Steineger HH; Alberti S; Spydevold O; Auwerx J; Gustafsson JA; Nebb HI
    Mol Endocrinol; 2000 May; 14(5):741-52. PubMed ID: 10809236
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nuclear receptor signaling and cardiac energetics.
    Huss JM; Kelly DP
    Circ Res; 2004 Sep; 95(6):568-78. PubMed ID: 15375023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway.
    Zheng X; Sun T; Wang X
    Biochem Biophys Res Commun; 2013 Jul; 436(3):377-81. PubMed ID: 23747418
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Telmisartan increases fatty acid oxidation in skeletal muscle through a peroxisome proliferator-activated receptor-gamma dependent pathway.
    Sugimoto K; Kazdová L; Qi NR; Hyakukoku M; Kren V; Simáková M; Zídek V; Kurtz TW; Pravenec M
    J Hypertens; 2008 Jun; 26(6):1209-15. PubMed ID: 18475159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cellular mechanisms regulating fuel metabolism in mammals: role of adipose tissue and lipids during prolonged food deprivation.
    Viscarra JA; Ortiz RM
    Metabolism; 2013 Jul; 62(7):889-97. PubMed ID: 23357530
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic flexibility is conserved in diabetic myotubes.
    Gaster M
    J Lipid Res; 2007 Jan; 48(1):207-17. PubMed ID: 17062897
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adopted orphans as regulators of inflammation, immunity and skeletal homeostasis.
    Ipseiz N; Scholtysek C; Culemann S; Krönke G
    Swiss Med Wkly; 2014; 144():w14055. PubMed ID: 25474159
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease.
    Stadler K; Goldberg IJ; Susztak K
    Curr Diab Rep; 2015 Jul; 15(7):40. PubMed ID: 25957525
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Time-dependent reduction in oxidative capacity among cultured myotubes from spinal cord injured individuals.
    Stevanovic S; Dalmao-Fernandez A; Mohamed D; Nyman TA; Kostovski E; Iversen PO; Savikj M; Nikolic N; Rustan AC; Thoresen GH; Kase ET
    Acta Physiol (Oxf); 2024 Jul; 240(7):e14156. PubMed ID: 38711362
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased Glycolysis and Higher Lactate Production in Hyperglycemic Myotubes.
    Lund J; Ouwens DM; Wettergreen M; Bakke SS; Thoresen GH; Aas V
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pancreatic cancer cells show lower oleic acid oxidation and their conditioned medium inhibits oleic acid oxidation in human myotubes.
    Krapf SA; Lund J; Lundkvist M; Dale MG; Nyman TA; Thoresen GH; Kase ET
    Pancreatology; 2020 Jun; 20(4):676-682. PubMed ID: 32360002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Substrate oxidation in primary human skeletal muscle cells is influenced by donor age.
    Aas V; Thoresen GH; Rustan AC; Lund J
    Cell Tissue Res; 2020 Dec; 382(3):599-608. PubMed ID: 32897419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.