These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21549587)

  • 1. Compact optical microfluidic uric acid analysis system.
    Chang CP; Nagel DJ; Velasquez MT; Zaghloul ME
    Biosens Bioelectron; 2011 Jun; 26(10):4155-61. PubMed ID: 21549587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip.
    Irawan R; Tjin SC; Fang X; Fu CY
    Biomed Microdevices; 2007 Jun; 9(3):413-9. PubMed ID: 17473985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of uric acid and p-aminohippuric acid in human saliva and urine using capillary electrophoresis with electrochemical detection: potential application in fast diagnosis of renal disease.
    Guan Y; Wu T; Ye J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Jul; 821(2):229-34. PubMed ID: 15916928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid.
    Yu J; Ge L; Huang J; Wang S; Ge S
    Lab Chip; 2011 Apr; 11(7):1286-91. PubMed ID: 21243159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of poly(dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine.
    Liang RP; Gan GH; Qiu JD
    J Sep Sci; 2008 Aug; 31(15):2860-7. PubMed ID: 18655017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of selective and sensitive electrochemically treated pencil graphite electrodes for the determination of uric acid in urine and blood serum.
    Ozcan A; Sahin Y
    Biosens Bioelectron; 2010 Jul; 25(11):2497-502. PubMed ID: 20452760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor.
    Atta NF; El-Kady MF; Galal A
    Anal Biochem; 2010 May; 400(1):78-88. PubMed ID: 20064483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of multiple colorimetric indicators for paper-based microfluidic devices.
    Dungchai W; Chailapakul O; Henry CS
    Anal Chim Acta; 2010 Aug; 674(2):227-33. PubMed ID: 20678634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-talk problem on a fluorescence multi-channel microfluidic chip system.
    Irawan R; Tjin SC; Yager P; Zhang D
    Biomed Microdevices; 2005 Sep; 7(3):205-11. PubMed ID: 16133808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor.
    Wisitsoraat A; Sritongkham P; Karuwan C; Phokharatkul D; Maturos T; Tuantranont A
    Biosens Bioelectron; 2010 Dec; 26(4):1514-20. PubMed ID: 20727731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles.
    Kumar A; Hens A; Arun RK; Chatterjee M; Mahato K; Layek K; Chanda N
    Analyst; 2015 Mar; 140(6):1817-21. PubMed ID: 25655365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination.
    Yu J; Wang S; Ge L; Ge S
    Biosens Bioelectron; 2011 Mar; 26(7):3284-9. PubMed ID: 21257303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in-line microfluidic blood sampling interface between patients and saline infusion systems.
    Browne AW; Ahn CH
    Biomed Microdevices; 2011 Aug; 13(4):661-9. PubMed ID: 21465091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squeeze-chip: a finger-controlled microfluidic flow network device and its application to biochemical assays.
    Li W; Chen T; Chen Z; Fei P; Yu Z; Pang Y; Huang Y
    Lab Chip; 2012 May; 12(9):1587-90. PubMed ID: 22418974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid.
    Thiagarajan S; Chen SM
    Talanta; 2007 Nov; 74(2):212-22. PubMed ID: 18371632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urine analysis in microfluidic devices.
    Lin CC; Tseng CC; Chuang TK; Lee DS; Lee GB
    Analyst; 2011 Jul; 136(13):2669-88. PubMed ID: 21617803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated systems for rapid point of care (PoC) blood cell analysis.
    van Berkel C; Gwyer JD; Deane S; Green NG; Holloway J; Hollis V; Morgan H
    Lab Chip; 2011 Apr; 11(7):1249-55. PubMed ID: 21331413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence affinity sensing by using a self-contained fluid manoeuvring microfluidic chip.
    Hong JW; Chung KH; Yoon HC
    Analyst; 2008 Apr; 133(4):499-504. PubMed ID: 18365120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices.
    Chen X; Chen J; Wang F; Xiang X; Luo M; Ji X; He Z
    Biosens Bioelectron; 2012 May; 35(1):363-368. PubMed ID: 22472530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic system for detection of alpha-thalassemia-1 deletion using saliva samples.
    Lien KY; Liu CJ; Kuo PL; Lee GB
    Anal Chem; 2009 Jun; 81(11):4502-9. PubMed ID: 19419160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.